Skip to main content
Log in

Growth mechanism of ZnO nanowires via direct Zn evaporation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanowire synthesized from direct Zinc (Zn) vapor transport in O2 environment has been studied. The results show that the first step is the formation of ZnO film on the substrate. Then anisotropic abnormal grain growth in the form of ZnO platelets takes place. Subsequently, single-crystalline ZnO platelets grow in [0001] direction to form whiskers. During whisker growth, transformation from layer-by-layer growth to simultaneous multilayer growth occurs when the two-dimensional (2D) Ehrlich–Schwoebel (ES) barrier at the ZnO island edge is sufficiently large and the monolayer island diameter is smaller than the island spacing. As multilayered islands grows far away from the base, isotropic mass diffusion (spherical diffusion) will gradually displace anisotropic diffusion (linear diffusion), which contributes to the formation of pyramid on the top plane of the whisker. When the pyramid contains enough atomic layers, the 2D ES barrier transits to 3-dimensional ES barrier, which contributes to repeated nucleation and growth of multilayered islands or pyramids on the old pyramids. The pyramids play a critical role to taper the whisker to nanorod with a diameter less than 100 nm. The nanorod then grows to nanowire via repeated growth of epitaxial hexagonal-pyramid shape-like islands on the (0001)-plane with \( \left\{ {11\overline{2} 3} \right\} \) facets as the slope planes. During coarsening, the breakage of step motion of \( \left\{ {11\overline{2} 3} \right\} \) facets and the appearance of \( \left\{ {11\overline{2} 0} \right\} \) facets on the base of pyramids may result from the step bunching of {0001} facets, which is consistent with the existence of “2D” Ehrlich–Schwoebel barrier on the edge of (0001) facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhong ZH, Wang DL, Cui Y, Bockrath MW, Lieber CM (2003) Science 302:1377

    Article  CAS  Google Scholar 

  2. Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Science 294:1313

    Article  CAS  Google Scholar 

  3. Liu CY, Antonio J, Yao Y, Meng XM, Lee CS, Fan SS, Lifshitz Y, Lee ST (2003) Adv Mater 15:838

    Article  CAS  Google Scholar 

  4. Hu J, Odom TW, Lieber CM (1999) Acc Chem Res 32:435

    Article  CAS  Google Scholar 

  5. Wang ZL, Kong XY, Ding Y et al (2004) Adv Funct Mater 14:943

    Article  CAS  Google Scholar 

  6. Zhang H, Zhang SY, Pan S et al (2005) J Am Ceram Soc 88:566

    Article  CAS  Google Scholar 

  7. Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58:R16024

    Article  CAS  Google Scholar 

  8. He MQ, Zhou PZ, Mohammad SN, Harris GL, Halpern JB, Jacobs R, Sarney WL, Salamanca-Riba L (2001) J Cryst Growth 231:357

    Article  CAS  Google Scholar 

  9. Wu Q, Hu Z, Wang XZ, Hu YM, Tian YJ, Chen Y (2004) Dia Rel Mat 13:38

    Article  CAS  Google Scholar 

  10. Vaddiraju S, Mohite A, Chin A, Meyyappan M, Sumanasekera G, Alphenaar BW, Sunkara MK (2005) Nano Lett 5:1625

    Article  CAS  Google Scholar 

  11. Sharma S, Sunkara MK (2002) J Am Chem Soc 124:12288

    Article  CAS  Google Scholar 

  12. Dang HY, Wang J, Fan SS (2003) Nanotechnology 14:738

    Article  CAS  Google Scholar 

  13. Lyu SC, Zhang Y, Lee CJ et al (2003) Chem Mater 15:3294

    Article  CAS  Google Scholar 

  14. Zhang Y, Jia HB, Yu DP (2004) J Phys D-Appl Phys 37:413

    Article  CAS  Google Scholar 

  15. Chang PC, Fan ZY, Wang D, Tseng WY, Chiou WA, Hong J, Lu JG (2004) Chem Mater 16:5133

    Article  CAS  Google Scholar 

  16. Wang RC, Liu CP, Huang JL, Chen SJ (2005) Appl Phys Lett 86:251104

    Article  CAS  Google Scholar 

  17. Kima TW, Kawazoe T, Yamazaki S, Ohtsu M, Sekiguchi T (2004) Appl Phys Lett 84:3358

    Article  CAS  Google Scholar 

  18. Zhao M, Chen XL, Zhang XN, Dai L, Jian JK, Xu YP (2004) Appl Phys A: Mater Sci Process 79:429

    Article  CAS  Google Scholar 

  19. Mozetic M, Cvelbar U, Sunkara MK, Vaddiraju S (2005) Adv Mater 17:2138

    Article  CAS  Google Scholar 

  20. Brenner SS, Sears GW (1956) Acta Met 4:270

    Google Scholar 

  21. Zhang Y, Jia HB, Luo XH, Chen XH, Yu DP, Wang RM (2003) J Phys Chem B 107:8289

    Article  CAS  Google Scholar 

  22. Kunaver U, Kolar D (1998) Acta Mater 46:4629

    Article  CAS  Google Scholar 

  23. Heuer AH, Fryburg GA, Ogbuji LU, Mitchell TE, Shinozaki SJ (1978) J Am Ceram Soc 61:406

    Article  CAS  Google Scholar 

  24. Mitchell TE, Ogbuji LU, Heuer AH (1978) J Am Ceram Soc 61:412

    Article  CAS  Google Scholar 

  25. Meyer B, Marx D (2003) Phys Rev B 67:035403

    Article  CAS  Google Scholar 

  26. Wang ZL, Kong XY, Zuo JM (2003) Phys Rev Lett 91:185502

    Article  CAS  Google Scholar 

  27. Hughes WL, Wang ZL (2005) Appl Phys Lett 86:043106

    Article  CAS  Google Scholar 

  28. Ehrlich G, Hudda FG (1966) J Chem Phys 44:1039

    Article  CAS  Google Scholar 

  29. Schwoebel R (1969) J Appl Phys 40:614

    Article  CAS  Google Scholar 

  30. Villain J (1991) J Phys I 1:19

    Google Scholar 

  31. Siegert M, Plischke M (1996) Phys Rev E 53:307

    Article  CAS  Google Scholar 

  32. Siegert M, Plischke M (1994) Phys Rev Lett 73:1517

    Article  CAS  Google Scholar 

  33. Lagally MG, Zhang ZY (2002) Nature 417:907

    Article  CAS  Google Scholar 

  34. Tersoff J, Vandergon AWD, Tromp RM (1994) Phys Rev Lett 72:266

    Article  CAS  Google Scholar 

  35. Kellogg GL, Feibelman PJ (1990) Phys Rev Lett 64:3143

    Article  CAS  Google Scholar 

  36. Vedensky DD, Zangwill A, Luse CN, Wilby MR (1993) Phys Rev E 48:852

    Article  Google Scholar 

  37. Filimonov SN, Hervieu YY (2004) Surf Sci 553:133

    Article  CAS  Google Scholar 

  38. Baxter JB, Wu F, Aydila ES (2003) Appl Phys Lett 83:3797

    Article  CAS  Google Scholar 

  39. Liu SJ, Huang HC, Woo CH (2002) Appl Phys Lett 80:3295

    Article  CAS  Google Scholar 

  40. Isu T, Watanabe A, Hata M, Katayama Y (1988) Jpn J Appl Phys 27:L2259

    Article  CAS  Google Scholar 

  41. Orme C, Johnson MD, Sudijono JL, Leung KT, Orr BG (1994) Appl Phys Lett 64:860

    Article  CAS  Google Scholar 

  42. Dulub O, Boatner LA, Diebold U (2002) Surf Sci 519:201

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Research Grants Council of Hong Kong SAR (N_CityU125/05), China, US Army International Technology Center—Pacific, and the National Basic Research Program of China (973 Program) (Grant Nos. 2007CB936000 and 2006CB933000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuit-Tong Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, H., Chang, J.C., Shan, Y. et al. Growth mechanism of ZnO nanowires via direct Zn evaporation. J Mater Sci 44, 563–571 (2009). https://doi.org/10.1007/s10853-008-3071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3071-6

Keywords

Navigation