Skip to main content
Log in

Elastic property prediction by finite element analysis with random distribution of materials for tungsten/silver composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present numerical study, we introduce a finite element analysis for heterogeneous materials via a random distribution of materials to predict effective elastic properties. With this random distributing strategy, a large scale parametric analysis via finite element becomes feasible for the multi-phase heterogeneous solids. Taking a well-documented tungsten–silver bi-continuous material as an example, the numerical prediction provided here for the effective properties is checked by experimental testing data available in open publication. Discussions on the present finite element prediction and other approaches are also made by comparing with Hashin and Shtrikman (J Mech Phys Solids 11:127–140, 1963) bounds in the composite mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christensen R (1979) Mechanics of composite materials. Wiley, New York

    Google Scholar 

  2. Mura T (1982) Micromechanics of defects in solids. Martinus Nijhoff Publisher

  3. Taya M, Arsenault RJ (1989) Metal matrix composites. Pergamon Press

  4. Hu N, Wang B, Tan GW, Yao ZH, Yuan WF (2000) Comp Sci Technol 60:1811–1823. doi:https://doi.org/10.1016/S0266-3538(00)00054-3

    Article  Google Scholar 

  5. Iovane G, Nasedkin AV (2005) Comput Struc 84:19–24. doi:https://doi.org/10.1016/j.compstruc.2005.09.002

    Article  Google Scholar 

  6. Wang WX, Luo D, Takao Y, Kakimoto K (2006) Comput Struc 84:991–1001. doi:https://doi.org/10.1016/j.compstruc.2006.02.013

    Article  Google Scholar 

  7. Umekawa S, Kotfila R, Sherby OD (1965) J Mech Phys 13:229–235. doi:https://doi.org/10.1016/0022-5096(65)90012-8

    Article  CAS  Google Scholar 

  8. Christensen R, Lo KH (1979) J Mech Phys Solids 27:315–330. doi:https://doi.org/10.1016/0022-5096(79)90032-2

    Article  CAS  Google Scholar 

  9. Roberts AP, Garboczi EJ (1999) J Mech Phys Solids 47:2029–2055. doi:https://doi.org/10.1016/S0022-5096(99)00016-2

    Article  CAS  Google Scholar 

  10. Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11:127–140. doi:https://doi.org/10.1016/0022-5096(63)90060-7

    Article  Google Scholar 

  11. Garboczi EJ, Day AR (1995) J Mech Phys Solid 43:1349–1362

    Article  CAS  Google Scholar 

  12. MATLAB The MathWorks, Inc., Massachusetts (2005)

  13. Version ANSYS 8.1, ANSYS, Inc., Southpointe (2005)

  14. Budiansky B (1965) J Mech Phys Solids 13:223–227. doi:https://doi.org/10.1016/0022-5096(65)90011-6

    Article  Google Scholar 

  15. Christensen R (1990) J Mech Phys Solids 38:379–404. doi:https://doi.org/10.1016/0022-5096(90)90005-O

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L.M., Li, C., Fan, H. et al. Elastic property prediction by finite element analysis with random distribution of materials for tungsten/silver composite. J Mater Sci 43, 5804–5808 (2008). https://doi.org/10.1007/s10853-008-2891-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2891-8

Keywords

Navigation