Skip to main content
Log in

Doping of lanthanum cobaltite by Mn: thermal, magnetic, and catalytic effect

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Great differences in crystallographic phases, magnetic properties, and catalytic activity were detected in lanthanum cobaltite and cobaltite modified with the insertion of 10 wt.% of Mn. Atomic absorption spectroscopy, BET area measurements, XRD analysis, TPR, and FT-IR suggest that the total insertion of manganese in the LaCoO3 structure is successful. Thermal stability is reached for LaCo0.90Mn0.10O3 up to 973 K without loss of the perovskite structure. The magnetic properties of the as-grown compounds are maintained after a first reduction process up to 723–773 K, while presence of segregated phases is observed after reduction at 973 K. The catalytic activity evaluated in the total combustion of acetyl acetate shows a decrease in the ignition temperature, i.e. an increase in the catalytic activity for the LaCo0.90Mn0.10O3 perovskite. A significant enhancement in the catalytic activity expressed as intrinsic activity, mol m−2 h−1, with the manganese substitution was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Connell M, Norman AK, Hüttermann CF, Morris MA (1999) Catal Today 47:123. doi:https://doi.org/10.1016/S0920-5861(98)00291-0

    Article  Google Scholar 

  2. Tejuca LJ, Fierro JLG (eds) (1993) Properties and applications of perovskite-type oxides. Dekker, New York

  3. Voorhoeve JH (1997) In: Burton HH, Garten RL (eds) Advanced materials in catalysis. Academic Press, New York, p 127

  4. Hirusta S, Pina MP, Melendez M, Santamaría J (1998) Catal Lett 54:69. doi:https://doi.org/10.1023/A:1019003216521

    Article  CAS  Google Scholar 

  5. Peña O, Antunes AB, Martinez G, Gil V, Moure C (2007) J Magn Magn Mater 310:159. doi:https://doi.org/10.1016/j.jmmm.2006.08.004

    Article  Google Scholar 

  6. Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ionics 1–2:281. doi:https://doi.org/10.1016/S0167-2738(99)00222-2

    Article  Google Scholar 

  7. Pecchi G, Reyes P, Zamora R, Campos C, Cadús LE, Barbero BP (2008) Catal Today 133–135:420

    Article  Google Scholar 

  8. Provendier H, Petit C, Estournes C, Libs S, Kienemann A (1999) Appl Catal Gen 180:163. doi:https://doi.org/10.1016/S0926-860X(98)00343-3

    Article  CAS  Google Scholar 

  9. Barbero BP, Andrade Gamboa J, Cadús LE (2006) Appl Catal B Environ 65:21. doi:https://doi.org/10.1016/j.apcatb.2005.11.018

    Article  CAS  Google Scholar 

  10. Inaba H, Hayashi H, Suzuki M (2001) Solid State Ionics 1–2:99. doi:https://doi.org/10.1016/S0167-2738(01)00904-3

    Article  Google Scholar 

  11. Rao CNR, Raveau B (eds) (1998) Colossal magnetoresistance charge ordering and related properties of manganese oxides. World Scientific, Singapore

    Google Scholar 

  12. Tokura Y (2000) Colossal magnetoresistive oxides. Gordon & Breach, New York

    Book  Google Scholar 

  13. Kojima I, Adachi H, Yasumori I (1983) Surf Sci 130:50. doi:https://doi.org/10.1016/0039-6028(83)90259-5

    Article  CAS  Google Scholar 

  14. Spiniccia R, Tofanaria A, Faticantib M, Pettitib I, Porta P (2001) J Mol Catal A 176:247

    Article  Google Scholar 

  15. Courty P, Ajot H, Marcilly C, Delmon B (1973) Power Technol 7:21. doi:https://doi.org/10.1016/0032-5910(73)80005-1

    Article  CAS  Google Scholar 

  16. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309. doi:https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  17. Vasanthacharya NY, Ganguly P, Rao CNR (1984) J Solid State Chem 53:140. doi:https://doi.org/10.1016/0022-4596(84)90237-8

    Article  CAS  Google Scholar 

  18. Chainani A, Sarma DD, Das I, Sampathkumaran EV (1996) J Phys Condens Matter 8:L631. doi:https://doi.org/10.1088/0953-8984/8/43/001

    Article  Google Scholar 

  19. Monti DAM, Baiker A (1983) J Catal 83:323. doi:https://doi.org/10.1016/0021-9517(83)90058-1

    Article  CAS  Google Scholar 

  20. Mallet P, Caballero A (1988) J Chem Soc Faraday Trans 84:2369. doi:https://doi.org/10.1039/f19888402369

    Article  Google Scholar 

  21. Marcos J, Buitrago G, Lombardo A (1987) J Catal 105:95. doi:https://doi.org/10.1016/0021-9517(87)90011-X

    Article  CAS  Google Scholar 

  22. Crespin M, Keith W (1981) J Catal 69:359. doi:https://doi.org/10.1016/0021-9517(81)90171-8

    Article  CAS  Google Scholar 

  23. Sis L, Wirtz G (1973) J Appl Phys 44:1. doi:https://doi.org/10.1063/1.1662195

    Article  Google Scholar 

  24. Yang M, Zhong Y, Liu Z-K (2007) Solid State Ionics 178:1027. doi:https://doi.org/10.1016/j.ssi.2007.04.014

    Article  CAS  Google Scholar 

  25. Olivari AOM, Peña MA, Tascon JM, Tejuca LG (1988) J Mol Catal 45:355. doi:https://doi.org/10.1016/0304-5102(88)80067-1

    Article  Google Scholar 

  26. Fierro JLG, Peña MA, Tejuca LG (1988) J Mater Sci 23:1018. doi:https://doi.org/10.1007/BF01154005

    Article  CAS  Google Scholar 

  27. Merino N, Barbero B, Ruiz P, Cadús L (2006) J Catal 240:11. doi:https://doi.org/10.1016/j.jcat.2006.03.020

    Article  Google Scholar 

  28. Bedel L, Roger A, Estournes C, Kiennemann A (2003) Catal Today 100:207. doi:https://doi.org/10.1016/S0920-5861(03)00388-2

    Article  Google Scholar 

  29. Koponen MJ, Suvanto M, Kallinen K, Kinnunen T-JJ, Harkonen M, Pakkanen TA (2006) Solid State Sci 8:450. doi:https://doi.org/10.1016/j.solidstatesciences.2005.11.008

    Article  CAS  Google Scholar 

  30. Davydov A (1990) Infrared spectroscopy of adsorbed species on the surface of transition metal oxides, chap 1. Wiley, England

  31. Asai K, Yoneda A, Yokokura O, Tranquada JM, Shirane G, Kohn K (1998) J Phys Soc Jpn 67:290 and references therein. doi:https://doi.org/10.1143/JPSJ.67.290

    Article  CAS  Google Scholar 

  32. Fujine Y, Fujishiro H, Kashiwada Y, Hejtmanek J, Ikebe M (2005) Physica B (Amsterdam) 359–361:1360. doi:https://doi.org/10.1016/j.physb.2005.01.411

    Article  Google Scholar 

  33. Motin Seikh MD, Sudheendra L, Narayana C, Rao CNR (2004) J Mol Struct 706:121. doi:https://doi.org/10.1016/j.molstruc.2004.03.058

    Article  CAS  Google Scholar 

  34. Hejtmánek J, Jirák Z, Knížek K, Maryško M, Veverka M, Fujishiro H (2004) J Magn Magn Mater 272–276:e283. doi:https://doi.org/10.1016/j.jmmm.2003.12.679

    Article  Google Scholar 

  35. Pecchi G, Campos C, Peña O, Cadus LE (2008) J Mol Cat A Chem 282:158. doi:https://doi.org/10.1016/j.molcata.2007.12.022

    Article  CAS  Google Scholar 

  36. Wollan EO, Koehler WC (1955) Phys Rev 100:545. doi:https://doi.org/10.1103/PhysRev.100.545

    Article  CAS  Google Scholar 

  37. Kawano H, Kajimoto R, Kubota M, Yoshikawa H (1996) Phys Rev B 53:2202. doi:https://doi.org/10.1103/PhysRevB.53.2202

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank CONICYT (Fondecyt Grant 1060702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina Pecchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pecchi, G., Campos, C., Jiliberto, M.G. et al. Doping of lanthanum cobaltite by Mn: thermal, magnetic, and catalytic effect. J Mater Sci 43, 5282–5290 (2008). https://doi.org/10.1007/s10853-008-2790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2790-z

Keywords

Navigation