Skip to main content
Log in

Light absorption efficiencies of gold nanoellipsoid at different resonance frequency

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Light absorption efficiencies (defined as the ratio of the absorption cross section to the total extinction cross section at each resonance wavelength) of gold nanodisk and nanorod were calculated based on quasi-static approximation. The absorption efficiency solely depends on the frequency of surface plasmon resonance. With increasing resonance wavelength, the absorption efficiencies change in the same fashion for both nanodisk and nanorod. However, the resonance absorption at short wavelength is easy to be obtained by gold nanodisk, whereas the resonance absorption at longer wavelength is easy to be obtained by gold nanorod. High absorption efficiency (>98%) can be obtained in the visible region by increasing the aspect ratio of gold nanodisk. Although the longitudinal absorption efficiency of gold nanorod is relative lower by increasing the aspect ratio, the absorption efficiency is also tunable in the near infrared region, which makes it potentially useful in silicon solar cells and vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Phys Rev Lett 95:267405. doi:https://doi.org/10.1103/PhysRevLett.95.267405

    Article  CAS  Google Scholar 

  2. Atkinson R, Hendren WR, Wurtz GA, Dickson W, Zayats AV, Evans P et al (2006) Phys Rev B 73:235402. doi:https://doi.org/10.1103/PhysRevB.73.235402

    Article  Google Scholar 

  3. Jiang XC, Brioude A, Pileni MP (2006) Colloid Surf A 277:201. doi:https://doi.org/10.1016/j.colsurfa.2005.11.062

    Article  CAS  Google Scholar 

  4. Eremina E, Eremin Y, Wriedt T (2007) Opt Commun 273:278. doi:https://doi.org/10.1016/j.optcom.2006.12.018

    Article  CAS  Google Scholar 

  5. Huang CJ, Chiu PH, Wang YH, Meen TH, Yang CF (2007) Nanotechnology 18:395603. doi:https://doi.org/10.1088/0957-4484/18/39/395603

    Article  Google Scholar 

  6. Stoleru VG, Towe E (2005) Microelectron Eng 8:358. doi:https://doi.org/10.1016/j.mee.2005.03.032

    Article  Google Scholar 

  7. Tanabe K (2007) Mater Lett 61:4573. doi:https://doi.org/10.1016/j.matlet.2007.02.053

    Article  CAS  Google Scholar 

  8. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) J Phys Chem B 110:7238. doi:https://doi.org/10.1021/jp057170o

    Article  CAS  Google Scholar 

  9. Lee KS, El-Sayed MA (2005) J Phys Chem B 109:20331. doi:https://doi.org/10.1021/jp054385p

    Article  CAS  Google Scholar 

  10. Langhammer C, Kasemo B, Zoric I (2007) J Chem Phys 126:194702. doi:https://doi.org/10.1063/1.2734550

    Article  Google Scholar 

  11. El-Sayed IH, Huang X, El-Sayed MA (2005) Nano Lett 5:829. doi:https://doi.org/10.1021/nl050074e

    Article  CAS  Google Scholar 

  12. Qu SL, Gao YC, Jiang XW, Zeng HD, Song YL, Qiu JR et al (2003) Opt Commun 224:321. doi:https://doi.org/10.1016/S0030-4018(03)01761-9

    Article  CAS  Google Scholar 

  13. Pillai S, Catchpole KR, Trupke T, Green MA (2007) J Appl Phys 101:093105. doi:https://doi.org/10.1063/1.2734885

    Article  Google Scholar 

  14. Nishioka K, Horita S, Ohdaira K, Matsumura H (2008) Sol Energy Mater Sol C 92(8):919. doi:https://doi.org/10.1016/j.solmat.2008.02.017

    Article  CAS  Google Scholar 

  15. Wen C, Ishikawa K, Kishima M, Yamada K (2000) Sol Energy Mater Sol C 61:339. doi:https://doi.org/10.1016/S0927-0248(99)00117-8

    Article  CAS  Google Scholar 

  16. Naidu BVK, Park JS, Kim SC, Park SM, Lee EJ (2008) Sol Energy Mater Sol C 92:397. doi:https://doi.org/10.1016/j.solmat.2007.09.017

    Article  CAS  Google Scholar 

  17. Perenboom JAAJ, Wyder P, Meier F (1981) Phys Rep 78:173. doi:https://doi.org/10.1016/0370-1573(81)90194-0

    Article  CAS  Google Scholar 

  18. Bohren CF (1983) Absorption and scattering of light by small particles. A Wiley Interscience Publication, New York

    Google Scholar 

  19. Viseu TMR, Ferreira MIC (2005) Sol Energy Mater Sol C 88:301. doi:https://doi.org/10.1016/j.solmat.2004.11.004

    Article  CAS  Google Scholar 

  20. Negny S, Meyer M, Prevost M (2001) Chem Eng J 83:7. doi:https://doi.org/10.1016/S1385-8947(00)00189-3

    Article  CAS  Google Scholar 

  21. Wang Y, Kan H (2003) Opt Commun 226:303. doi:https://doi.org/10.1016/j.optcom.2003.08.023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhu.

Additional information

Jian Zhu and Jian-Jun Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Li, JJ., Zhao, JW. et al. Light absorption efficiencies of gold nanoellipsoid at different resonance frequency. J Mater Sci 43, 5199–5205 (2008). https://doi.org/10.1007/s10853-008-2751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2751-6

Keywords

Navigation