Skip to main content

Advertisement

Log in

Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH2–Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 1017 cm−2 under N2 atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Idesaki A, Miwa Y, Katase Y, Narisawa M, Okamura K, Itoh M (2003) J Mater Sci 38:2591. doi:https://doi.org/10.1023/A:1024470115744

    Article  CAS  Google Scholar 

  2. Kotani M, Kohyama A, Katoh Y (2001) J Nucl Mater 289:37. doi:https://doi.org/10.1016/S0022-3115(00)00680-2

    Article  CAS  Google Scholar 

  3. Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M (2001) J Mater Sci 36:357. doi:https://doi.org/10.1023/A:1004864126085

    Article  CAS  Google Scholar 

  4. Takeda M, Saeki A, Sakamoto J, Imai Y, Ichikawa H (1999) Compos Sci Technol 59:787. doi:https://doi.org/10.1016/S0266-3538(99)00009-3

    Article  CAS  Google Scholar 

  5. Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M (2001) Radiat PhysChem 60:483. doi:https://doi.org/10.1016/S0969-806X(00)00394-7

    Article  CAS  Google Scholar 

  6. Takeda M, Imai Y, Ichikawa H, Kasai N, Seguchi T, Okamura K (1999) Compos Sci Technol 59:793. doi:https://doi.org/10.1016/S0266-3538(99)00010-X

    Article  CAS  Google Scholar 

  7. Clade J, Seider E, Sporn D (2005) J Eur Ceram Soc 25:123. doi:https://doi.org/10.1016/j.jeurceramsoc.2004.07.009

    Article  CAS  Google Scholar 

  8. Tazihemida A, Pailler R, Naslain R (1997) J Mater Sci 32:2359. doi:https://doi.org/10.1023/A:1018544805060

    Article  Google Scholar 

  9. Chollon G, Czerniak M, Pailler R, Bourrat X, Naslain R, Pillot JP, Cannet R (1997) J Mater Sci 32:893. doi:https://doi.org/10.1023/A:1018597432067

    Article  CAS  Google Scholar 

  10. Seguchi T (2000) Radiat Phys Chem 57:367. doi:https://doi.org/10.1016/S0969-806X(99)00406-5

    Article  CAS  Google Scholar 

  11. Chu ZY, Song YC, Xu YS, Fu YB (1999) J Mater Sci Lett 18:1793. doi:https://doi.org/10.1023/A:1006695615029

    Article  CAS  Google Scholar 

  12. Chu ZY, Song YC, Xu YS, Fu YB (2000) J Mater Sci Lett 19:1771. doi:https://doi.org/10.1023/A:1006795422400

    Article  CAS  Google Scholar 

  13. Fan XL, Feng CX, Song YC, Li XD (1999) J Mater Sci Lett 18:629. doi:https://doi.org/10.1023/A:1006607006285

    Article  CAS  Google Scholar 

  14. Shimoo T, Katase Y, Okamura K, Takano W (2004) J Mater Sci 39:6243. doi:https://doi.org/10.1023/B:JMSC.0000043593.01160.da

    Article  CAS  Google Scholar 

  15. Chu ZY, Song YC, Feng CX, Xu YS, Fu YB (2001) J Mater Sci Lett 20:585. doi:https://doi.org/10.1023/A:1010958528680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangping Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, L., Xu, Y., Li, Y. et al. Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers. J Mater Sci 43, 4849–4855 (2008). https://doi.org/10.1007/s10853-008-2703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2703-1

Keywords

Navigation