Skip to main content

Development of Polycarbosilane (PCS) Polymer and PCS-Derived SiC Fibers and Their Composites

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

Ceramics, in general, are high temperature materials that have low density, low coefficient thermal expansion, excellent mechanical properties (strength, hardness), high thermo-oxidative stability, and excellent chemical resistance. Therefore, these have been extensively explored for high temperature structural applications. Among many ceramics, silicon carbide (SiC) is one of the most promising non-oxide ceramics for applications in extreme environmental conditions. It has excellent combination of thermomechanical, chemical, and oxidation resistance properties that qualifies it to be highly suited for aerospace, defense, and nuclear applications. Processing of complicated structures through conventional powder processing route is difficult which led to the development of precursor-based route for processing of complicated shapes of ceramics. Silicon-based polymeric precursors have been intensively researched as source of SiC ceramics. This chapter broadly covers the development of various polymeric materials as precursors for different ceramics. Various chemical synthetic methods have been included and a brief account of the processing of ceramics has been given. Main focus is on the organo-silicon precursor materials, particularly polysilanes and polycarbosilanes (PCSs), that are potential source of SiC-based ceramics. Chapter ends with brief outlook of precursors’ route for ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hench LL, Ulrich DR (1984) Ultrastructure processing of ceramics, glasses and composites. Wiley, New York

    Google Scholar 

  2. Krenkel W (2005) Carbon fibre reinforced silicon carbide composites (C/SiC, C/C-SiC). In: Bansal NP (ed) Handbook of ceramic composites. Springer, Boston, pp 117–148

    Chapter  Google Scholar 

  3. Kumar S, Kumar A, Sampath V, Prasad VVB, Chaudhary JC, Gupta AK, Devi GR (2011) Fabrication and erosion studies of C-SiC composite jet vanes in solid rocket motor exhaust. J Eur Ceram Soc 31:2425–2431

    Article  CAS  Google Scholar 

  4. Kohyama A, Kotani M, Katoh Y, Nakayasu T, Sato M, Yamamura T, Okamura K (2000) High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J Nucl Mater 283:565–569

    Article  Google Scholar 

  5. Choyke WJ, Matsunami H, Pensl G (eds) (2004) Silicon carbide: recent major advances, 2 vol. Springer, Berlin

    Google Scholar 

  6. Kimoto T, Cooper JA (2014) Fundamentals of silicon carbide technology: growth, characterization, devices and applications. Wiley-IEEE Press, Hoboken

    Book  Google Scholar 

  7. Wynne KJ, Rice RW (1984) Ceramics via polymer pyrolysis. Annu Rev Mater Sci 14:297–334

    Article  CAS  Google Scholar 

  8. Birot M, Pillot J, Dunogues J (1995) Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. Chem Rev 95:1443–1477

    Article  CAS  Google Scholar 

  9. Loh PP, Bao X, Nangrejo MR, Edirisinghe MJ (2000) Preparation of silicon carbide foams using polymeric precursor solutions. J Mater Sci Lett 35:4365–4372

    Article  Google Scholar 

  10. Ainger FW, Herbert JM (1960) The preparation of phosphorus-nitrogen compounds as non-porous solids. In: Popper P (ed) Special ceramics. Academic, New York, pp 168–182

    Google Scholar 

  11. Chantrell PG, Popper P (1965) Inorganic polymers and ceramics. In: Popper P (ed) Special ceramics. Academic, New York, pp 87–103

    Google Scholar 

  12. Mera G, Riedel R (2009) Organosilicon-based polymers as precursors for ceramics. In: Colombo P, Riedel R, Soraru GD, Kleebe H-J (eds) Polymer derived ceramics: from nanostructure to applications. DEStech Publications, Lancaster, p 51

    Google Scholar 

  13. Yajima S, Hayashi J, Omori M (1975) Continuous silicon carbide fiber of high tensile strength. Chem Lett 4(9):931–934

    Article  Google Scholar 

  14. Yajima S, Hasegawa Y, Okamura K, Matsuzawa I (1978) Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature 273:525–527

    Article  CAS  Google Scholar 

  15. Yu Y, Tai J, Tang X, Guo Y, Tang M, Li X (2008) Continuous Si–C–O–Al fiber derived from aluminum-containing polycarbosilane precursor. Composites A 39:1101–1105

    Article  CAS  Google Scholar 

  16. Babonneau F, Soraru GD (1991) Synthesis and characterization of Si-Zr-C-O ceramics from polymer precursors. J Eur Ceram Soc 8:29–34

    Article  CAS  Google Scholar 

  17. Yang HS, Kwon OH, Lee JD, Kang PH (1996) Preparation and characteristics of titanium-modified silicon carbide fiber. J Ind Eng Chem 2(2):106–115

    CAS  Google Scholar 

  18. Yajima S, Okamura K, Hayashi J (1975) Structural analysis in continuous silicon carbide fibre of high tensile strength. Chem Lett 4(12):1209–1212

    Google Scholar 

  19. Yajima S, Okamura K, Hasegawa Y (1981) Method of producing silicon carbide fibers. US Patent 4,283,376

    Google Scholar 

  20. Okamura K, Sato M, Matsuzawa T, Seguchi T, Kawanishi S (1988) Silicon based ceramic fibers. Ceram Eng Sci Proc 9:909–918

    Article  CAS  Google Scholar 

  21. Mishra R, Tiwari RK, Saxena AK (2009) Synthesis of Fe–SiC nanowires via precursor route. J Inorg Organomet Polym 19:223–227

    Article  CAS  Google Scholar 

  22. Ginzburg M, MacLachlan MJ, Yang SM, Coombs N, Coyle TW, Raju NP, Greedan JE, Herber RH, Ozin GA, Manners I (2002) Genesis of nanostructured, magnetically tunable ceramics from the pyrolysis of cross-linked polyferrocenylsilane networks and formation of shaped macroscopic objects and micron scale patterns by micro molding inside silicon wafers. J Am Chem Soc 124(11):2625–2639

    Article  CAS  Google Scholar 

  23. Kawasaki S, Murase H, Fujiki T, Nishida R, Sakai S, Zaima H (2000) Epoxy resin composition and moldings. European Patent Applications EP0970981A1

    Google Scholar 

  24. Allcock HR, Mark JE, West R (1992) Inorganic polymers. Prentice Hall, Englewood Cliffs

    Google Scholar 

  25. Allcock HR (2002) Chemistry and applications of polyphosphazenes. Wiley, Hoboken

    Google Scholar 

  26. Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837

    CAS  Google Scholar 

  27. Pawlenko S (1986) Organosilicon chemistry. Walter de Gruyter, New York

    Book  Google Scholar 

  28. Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, New York

    Google Scholar 

  29. Greil P (2000) Polymer derived engineering ceramics. Adv Eng Mater 2(6):339–348

    Article  CAS  Google Scholar 

  30. Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29(3):149–182

    Article  CAS  Google Scholar 

  31. Seyferth D (1988) Polycarbosilanes: an overview. In: Inorganic and organometallic polymers. ACS symposium series 360. American Chemical Society, Washington, DC, pp 21–42

    Chapter  Google Scholar 

  32. Stark FO, Falender JR, Wright AP (1982) Silicones. In: Wilkinson G (ed) Comprehensive organometallic chemistry, vol 2. Pergamon Press, Oxford

    Google Scholar 

  33. Koe J (2009) Contemporary polysilane synthesis and functionalization. Polym Int 58:255–260

    Article  CAS  Google Scholar 

  34. Kipping FS, Sands JE (1921) Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8. J Chem Soc 119:830–847

    Article  CAS  Google Scholar 

  35. Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89:1359–1410

    Article  CAS  Google Scholar 

  36. Burkhard C (1949) Polydimethylsilanes. J Am Chem Soc 71:963–964

    Article  CAS  Google Scholar 

  37. West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103:7352–7354

    Article  CAS  Google Scholar 

  38. Horiguchi R, Onishi Y, Hayase S (1988) High molecular weight polysilanes with phenol moieties. Macromolecules 21:304–309

    Article  CAS  Google Scholar 

  39. Verbeek V (1973) Ger. Offen. 2218960 (Bayer AG); US Patent 3853567

    Google Scholar 

  40. Zeldin M, Wynne KJ, Allcock HR (1988) Inorganic and organometallic polymers. ACS symposium series 360. American Chemical Society, Washington, DC

    Book  Google Scholar 

  41. Tsirlin AM, Shcherbakova GI, Florina EK, Popova NA, Gubin SP, Moroz EM, Riedel R, Kroke E, Steen M (2002) Nano-structured metal containing polymer precursors for high temperature non-oxide ceramics and ceramic fibers- syntheses, pyrolyses and properties. J Eur Ceram Soc 22:2577–2585

    Article  CAS  Google Scholar 

  42. Gupta RK, Mishra R, Mukhopadhyay K, Tiwari RK, Ranjan A, Saxena AK (2009) A new technique for coating silicon carbide onto carbon nanotubes using a polycarbosilane precursor. Silicon 1(2):125–129

    Article  CAS  Google Scholar 

  43. Shiina K, Kumada M (1958) Thermal rearrangement of hexamethyldisilane to trimethyl(dimethylsilylmethyl)silane. J Org Chem 23:139–139

    Article  CAS  Google Scholar 

  44. Smith TL Jr (1986) US Patent 4,631,179

    Google Scholar 

  45. Whitmarsh CK, Interrante LV (1991) Synthesis and structure of a highly branched polycarbosilane derived from (chloromethyl)trichlorosilane. Organometallics 10:1336–1344

    Article  CAS  Google Scholar 

  46. Habel W, Haeusler W, Oelschläger A, Sartori P (2008) Chapter 89, New modified polycarbosilanes. In: Auner N, Weis J (eds) Organosilicon chemistry II: from molecules to materials. Wiley-VCH, Weinheim

    Google Scholar 

  47. Maghsoodi SI, Pang Y, Barton TJ (1990) Efficient, “one-pot” synthesis of silylene–acetylene and disilylene–acetylene preceramic polymers from trichloroethylene. J Polym Sci A Polym Chem 28:955–965

    Article  Google Scholar 

  48. Meyer MK, Akinc M, Maghsoodi SI, Zhang X, Barton TJ (1991) Silylene-acetylene polymers as precursors to SiC fibers. Ceram Eng Sci Proc 12:1019–1031

    Article  CAS  Google Scholar 

  49. Boury B, Corriu R, Leclercq D, Mutin P, Planeix JM, Vioux A (1991) A poly(vinylsilane): a precursor to silicon carbide. 1. Preparation and characterization. Organometallics 10: 1457–1461

    Article  CAS  Google Scholar 

  50. Curry JW (1956) The synthesis and polymerization of organosilanes containing vinyl and hydrogen joined to the same silicon atom. J Am Chem Soc 78:1686–1689

    Article  CAS  Google Scholar 

  51. Rocha RMD, Greil P, Bressiani JC, Bressiani AHDA (2005) Complex- shaped ceramic composites obtained by machining compact polymer- filler mixtures. Mater Res 8(2):191–196

    Article  Google Scholar 

  52. Galusek D, Sedlacek J, Riedel R (2007) Al2O3-SiC composites by warm pressing and sintering of an organosilicon polymer-coated alumina powder. J Eur Ceram Soc 27:2385–2392

    Article  CAS  Google Scholar 

  53. Zhang T, Evans JRG, Woodthorpe J (1995) Injection moulding of silicon carbide using an organic vehicle based on a preceramic polymer. J Eur Ceram Soc 15:729–734

    Article  CAS  Google Scholar 

  54. Colombo P, Paulson TE, Pantano CG (1997) Synthesis of silicon carbide thin films with polycarbosilane (PCS). J Am Ceram Soc 80:2333–2340

    Article  CAS  Google Scholar 

  55. Bunsell AR, Piant A (2006) A review of the development of three generations of small diameter silicon carbide fibers. J Mater Sci 41:823–839

    Article  CAS  Google Scholar 

  56. Erdal M, Guceri SI, Danforth SC (1999) Impregnation molding of particle-filled preceramic polymers: process modeling. J Am Ceram Soc 82:2017–2028

    Article  CAS  Google Scholar 

  57. Colombo P, Sglavo V, Pippel E, Woltersdorf J (1988) Joining of reaction –bonded silicon carbide using a preceramic polymer. J Mater Sci 33:2409–2416

    Google Scholar 

  58. Vakifahmetoglu C, Menapace I, Hirsch A, Biasetto L, Hauser R, Riedel R, Colombo P (2009) Highly porous macro-and micro-cellular ceramics from a polysilazane precursor. Ceram Int 35(8):3281–3290

    Article  CAS  Google Scholar 

  59. Janakiraman N, Aldinger F (2009) Fabrication and characterization of fully dense Si-C-N ceramics from a poly(ureamethylvinyl)silazane precursor. J Eur Ceram Soc 29:163–173

    Article  CAS  Google Scholar 

  60. Liew LA, Liu Y, Luo R, Cross T, An L, Bright VM, Dunn M, Daily JW, Raj R (2002) Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens Actuators A 95:143–151

    Article  Google Scholar 

  61. Idesaki A, Sugimoto M, Tanaka S, Narisawa M, Okamura K, Itoh M (2004) Synthesis of a minute SiC product from polyvinylsilane with radiation curing Part I Radiation curing of polyvinylsilane. J Mater Sci 39:5689–5694

    Article  CAS  Google Scholar 

  62. Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M (2001) Application of electron beam curing for silicon carbide fiber synthesis from blend polymer of polycarbosilane and polyvinylsilane. Radiat Phys Chem 60:483–487

    Article  CAS  Google Scholar 

  63. Schulz M, Borner M, Gottert J, Hanemann T, Hausselt J, Motz G (2004) Cross linking behavior of preceramic polymers effected by UV- and synchrotron radiation. Adv Eng Mater 6:676–680

    Article  CAS  Google Scholar 

  64. Yu Z, Yang L, Min H, Zhang P, Liu A, Riedel R (2015) High-ceramic-yield precursor to SiC-based ceramic: a hyperbranched polytitaniumcarbosilane bearing self-catalyzing units. J Eur Ceram Soc 35(2):851–858

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Gupta .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, R.K., Mishra, R., Kumar, S., Ranjan, A., Manocha, L.M., Prasad, N.E. (2020). Development of Polycarbosilane (PCS) Polymer and PCS-Derived SiC Fibers and Their Composites. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics