Skip to main content

Advertisement

Log in

Spark Plasma synthesis and diffusion of Cu and Ag in vanadium mixed valence oxides

  • Proceedings of the Symposium on Spark Plasma Synthesis and Sintering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Spark Plasma sintering (SPS) technique allows powders to be compacted at low temperature with a very short holding time. The powder loaded into a carbon die is heated via direct current pulses and simultaneously submitted to an uni-axial pressure of several MPa. Full density of the sample is achieved within minutes. This process is used to study Cu and Ag metals interactions with V2O5 oxide. Syntheses of MxV2O5 phases (M = Cu, Ag) have been achieved within minutes. Thus Cu and Ag atoms penetrate microcrystals of V2O5 oxide at a high speed, shearing its crystal network and simultaneously rebuilding the crystal structures of the prototype networks β, β′, ε or δ MxV2O5. To account for the formation of these phases identified by X-ray diffraction, structural mechanisms are proposed. Cu and Ag atomic diffusion parameters have been determined from energy dispersive X-ray spectroscopy (EDX) and electron micropobe analysis (EPMA) line scans. High values of diffusion coefficients have been determined. Cu atoms diffuse faster than Ag, DCu ≈ 4 × 10−8 m2/s and DAg ≈ 0.5–1 × 10−9 m2/s in ε and δ MxV2O5 phases, respectively. Their formation may also be used as a model for further investigations into the diffusion mechanisms of atoms in solids and for a better understanding of the SPS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. PNF2/CNRS, Module Haute Technologie, Université Paul Sabatier, Toulouse, France. Established by P. Millet, P. Rozier & J. Galy, CEMES-CNRS, 2003–2004.

References

  1. Tokita M (1999) Mater Sci Forum 83:308

    Google Scholar 

  2. Omori M (2000) Mater Sci Eng A 287:183. doi:https://doi.org/10.1016/S0921-5093(00)00773-5

    Article  Google Scholar 

  3. Shen ZJ, Johnsson M, Zhao Z, Nygren M (2002) J Am Ceram Soc 85(8):1921

    Article  CAS  Google Scholar 

  4. Anselmi-Tamburini U, Genari S, Garay JE, Munir ZA (2005) Mater Sci Eng 394:139. doi:https://doi.org/10.1016/j.msea.2004.11.019

    Article  Google Scholar 

  5. Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Mater Sci Eng 394:132

    Article  Google Scholar 

  6. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi:https://doi.org/10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  7. Locci AM, Orru R, Cao G, Sanna S, Congiu F, Concas G (2006) AICHE J 52(7):2618

    Article  CAS  Google Scholar 

  8. Yamauchi A, Yoshimi K, Kurokawa K, Hanada S (2007) J Alloys Compd 434–435:420–3

    Article  Google Scholar 

  9. Recknagel C, Reinfried N, Hohn P, Schnelle W, Rosner H, Grin Yu, Leithe-Jasper A (2007) Sci Technol Adv Mater Elsevier Science Ltd 8(5):357

  10. Inagaki J, Sakai Y, Uekawa N, Kojima T, Kakegawa K (2007) Mater Res Bull 42(6):1019

    Article  CAS  Google Scholar 

  11. Cao G, Locci AM, Orru R, Munir ZA (2006) Mater Sci Eng A Struct Mater Prop Microstr Process 434(1–2):23

    Google Scholar 

  12. Wadsley AD (1955) Acta Cryst 8:695

    Article  CAS  Google Scholar 

  13. Wadsley AD (1957) Acta Cryst 10:261

    Article  CAS  Google Scholar 

  14. Casalot A, Deschanvres A, Hagenmuller P, Raveau B (1965) Bull Soc Chim Fr XC 1730

  15. Galy J, Lavaud D, Casalot A, Hagenmuller P (1970) J Solid State Chem 2:531

    Article  CAS  Google Scholar 

  16. Lavaud D, Galy J (1971) Acta Cryst B27:1005

    Google Scholar 

  17. Savariault JM, Deramond E, Galy J (1994) Z für Kristallogr 209:405

    CAS  Google Scholar 

  18. Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L, Galy J, Tarascon J-M (2003) Nat Mater 2:755

    Article  CAS  Google Scholar 

  19. Andersson S (1965) Acta Chem Scand 19:1371

    Article  CAS  Google Scholar 

  20. Deramond E, Savariault JM, Galy J (1994) Acta Cryst C50:164

    CAS  Google Scholar 

  21. Enjalbert R, Galy J (1986) Acta Cryst C42:1467

    CAS  Google Scholar 

  22. Galy J (1992) J Solid State Chem 100:209

    Article  Google Scholar 

  23. Monchoux JP, Galy J (2008) J Solid State Chem 181:693

    Article  CAS  Google Scholar 

  24. Crank J (1956) The Mathematics of Diffusion. Clarendon Press, Oxford

    Google Scholar 

  25. Rozier P, Satto C, Galy J (2000) Solid State Sci 2(6):595

    Article  CAS  Google Scholar 

  26. Sholtens BB (1976) Mat Res Bull 11:1533

    Article  Google Scholar 

Download references

Acknowledgement

The Centre National de la Recherche Scientifique (France) is gratefully acknowledged for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Galy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galy, J., Monchoux, J.P. Spark Plasma synthesis and diffusion of Cu and Ag in vanadium mixed valence oxides. J Mater Sci 43, 6391–6399 (2008). https://doi.org/10.1007/s10853-008-2687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2687-x

Keywords

Navigation