Skip to main content
Log in

Solid-state amorphization of Cu + Zr multi-stacks by ARB and HPT techniques

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of CuZr binary alloys with wide composition range were fabricated through ARB and HPT techniques using pure Cu and Zr metals as the starting materials. Bulk alloy sheets with thickness of about 0.8 mm after ARB process and alloy disks with 0.30 mm in thickness and 10 mm in diameter after HPT process can be obtained, respectively. The structures of all the alloys were found to be gradually refined with the increase of ARB cycles or HPT rotations. As a result, nanoscale multiple-layered structure was formed for the 10 cycled ARBed specimens, which could partially transform into amorphous phase during subsequent low temperature annealing. While for the as-HPTed sample, the alloy was completely amorphized after 20 rotations without any heat treatment. The thermal stabilities of the amorphous alloys were studied. The deformation behavior and the amorphization mechanism during the ARB and HPT process were put forward and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Johnson WL (1999) MRS Bull 24:42

    Article  CAS  Google Scholar 

  2. Chen HS (1980) Rep Prog Phys 43:353. doi:https://doi.org/10.1088/0034-4885/43/4/001

    Article  Google Scholar 

  3. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  4. Langdon TG (2006) Rev Adv Mater Sci 11:34

    Google Scholar 

  5. Saito Y, Utsunomiya H, Tsuji N (1999) Acta Mater 47:579. doi:https://doi.org/10.1016/S1359-6454(98)00365-6

    Article  CAS  Google Scholar 

  6. Sagel A, Sieber H, Fecht HJ (1998) Acta Mater 46:4233. doi:https://doi.org/10.1016/S1359-6454(98)00097-4

    Article  CAS  Google Scholar 

  7. Wilde G, Rosner H (2007) J Mater Sci 42:1772. doi:https://doi.org/10.1007/s10853-006-0986-7

    Article  CAS  Google Scholar 

  8. Atzmon M, Verhoeven JD, Gibson ED (1984) Appl Phys Lett 45:1052. doi:https://doi.org/10.1063/1.95064

    Article  CAS  Google Scholar 

  9. Hsieh PJ, Huang JC, Hung YP (2004) Mater Chem Phys 88:364. doi:https://doi.org/10.1016/j.matchemphys.2004.08.002

    Article  CAS  Google Scholar 

  10. Ohsaki S, Kato S, Tsuji N (2007) Acta Mater 55:2885. doi:https://doi.org/10.1016/j.actamat.2006.12.027

    Article  CAS  Google Scholar 

  11. Sun YF, Tsuji N, Kato S (2007) Mater Trans 48:1605. doi:https://doi.org/10.2320/matertrans.MJ200735

    Article  CAS  Google Scholar 

  12. Hellstern E, Schultz L (1986) Appl Phys Lett 48:124. doi:https://doi.org/10.1063/1.96971

    Article  CAS  Google Scholar 

  13. Stolyarov VV, Gunderov DV, Popov AG, Gaviko VS, Ermolenko AS (1998) J Alloy Compos 281:69. doi:https://doi.org/10.1016/S0925-8388(98)00774-9

    Article  CAS  Google Scholar 

  14. Sergueeva AV, Song C, Valiev RZ, Mukherjee AK (2003) Mater Sci Eng A 339:159

    Article  Google Scholar 

  15. Revesz A, Hobor S, Labar JL, Zhilyaev AP, Kovacs Z (2006) J Appl Phys 100:103522. doi:https://doi.org/10.1063/1.2388868

    Article  Google Scholar 

  16. Huang JY, Zhu YT, Liao XZ, Valiev RZ (2004) Philos Mag Lett 84(3):183. doi:https://doi.org/10.1080/09500830310001657353

    Article  CAS  Google Scholar 

  17. El-Eskandarany Sherif M, Inoue A (2002) Metal Mater Trans 33:2145. doi:https://doi.org/10.1007/s11661-002-0046-0

    Article  Google Scholar 

  18. Schwarz RB, Johnson WL (1983) Phys Rev Lett 51:415. doi:https://doi.org/10.1103/PhysRevLett.51.415

    Article  CAS  Google Scholar 

  19. Zhang Q, Lai WS, Yang GW (2002) J Phys Condens Matter 12:6991. doi:https://doi.org/10.1088/0953-8984/12/31/301

    Article  Google Scholar 

  20. Chu JP, Liu CT, Wang SF (2004) Phys Rev B 69:113410. doi:https://doi.org/10.1103/PhysRevB.69.113410

    Article  Google Scholar 

  21. Wang D, Li Y, Sun BB (2004) Appl Phys Lett 20:4029. doi:https://doi.org/10.1063/1.1751219

    Article  Google Scholar 

  22. Xu D, Duan G, Johnson WL (2004) Phys Rev Lett 92:245504. doi:https://doi.org/10.1103/PhysRevLett.92.245504

    Article  Google Scholar 

  23. Inoue A, Zhang W (2004) Mater Trans 45:584. doi:https://doi.org/10.2320/matertrans.45.584

    Article  CAS  Google Scholar 

  24. Xu D, Lohwongwatana B, Duan G (2004) Acta Mater 52:2621. doi:https://doi.org/10.1016/j.actamat.2004.02.009

    Article  CAS  Google Scholar 

  25. Tang MB, Zhao DQ, Pan MX (2004) Chin Phys Lett 21:901. doi:https://doi.org/10.1088/0256-307X/21/4/001

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The present study was financially supported by the Grant-in-Aid for Scientific Research on Priority Area “Materials Science of Bulk Metallic Glasses” and the Global COE program “Center of Excellent for Advanced Structural and Functional Materials Design” in Osaka University both through MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y.F., Todaka, Y., Umemoto, M. et al. Solid-state amorphization of Cu + Zr multi-stacks by ARB and HPT techniques. J Mater Sci 43, 7457–7464 (2008). https://doi.org/10.1007/s10853-008-2634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2634-x

Keywords

Navigation