Skip to main content
Log in

In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trévenot F (1990) J Eur Ceram Soc 6:205

    Article  Google Scholar 

  2. Lee H, Speyer R (2003) J Am Ceram Soc 86:1468

    Article  CAS  Google Scholar 

  3. Roy TK, Subramanian C, Suri AK (2006) Ceramics Int 32:227

    Article  CAS  Google Scholar 

  4. Goldstein A, Yeshurun Y, Goldenberg A (2007) J Eur Ceram Soc 27:695

    Article  CAS  Google Scholar 

  5. Kim DK, Kim CH (1988) Adv Ceram Mater 3:52

    Article  CAS  Google Scholar 

  6. Sigl LS, Schwetz KA (1994) JJAP 10:224

    CAS  Google Scholar 

  7. Skorokhod V Jr, Vlajic MD, Krstic VD (1996) J Mater Sci Lett 15:1337

    Article  CAS  Google Scholar 

  8. Goto T, Li J, Hirai T (1998) In: 17th Conference on thermoelectrics, IEEE, vol 8, p 574

  9. Levin L, Frage N, Dariel MP (1999) Metal Mater Trans A30:3201

    Article  Google Scholar 

  10. Skorokhod V Jr, Krstic VD (2000) J Mater Sci Lett 19:237

    Article  CAS  Google Scholar 

  11. Skorohod Vl V, Krstic VD (2000) Powder Metall Metal Ceram 39:414

    Article  Google Scholar 

  12. Skorohod Vl V, Krstic VD (2000) Powder Metall Metal Ceram 39:504

    Article  Google Scholar 

  13. Cai KF, Nan CW, Schmuecker M, Mueller E (2003) J Alloys Comp 350:313

    Article  CAS  Google Scholar 

  14. Yamada S, Hirao K, Yamauchi Y, Kanzaki S (2003) J Eur Ceram Soc 23:1123

    Article  CAS  Google Scholar 

  15. Baharvandi HR, Hadian AM, Alizadeh A (2006) Appl Comp Mater 13:191

    Article  CAS  Google Scholar 

  16. Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) J Mater Sci 41:3097

    Article  CAS  Google Scholar 

  17. Mamedov V (2002) Powder Metall 45:322

    Article  CAS  Google Scholar 

  18. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763

    Article  CAS  Google Scholar 

  19. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  20. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533

    Article  CAS  Google Scholar 

  21. Takacs L (2002) Prog Mater Sci 47:355

    Article  CAS  Google Scholar 

  22. Munir ZA, Anselmi-Tamburini U (1989) Mater Sci Rep 3:277

    Article  CAS  Google Scholar 

  23. Radev DD, Klisurski D (1994) J Alloys Comp 206:39

    Article  CAS  Google Scholar 

  24. Radev DD, Klisurski D (2001) J Mater Synth Proc 9:131

    Article  CAS  Google Scholar 

  25. Halverson DC, Lum BY, Munir ZA (1987) In: Munir ZA et al. (eds) Symposium on High-temperature materials-IV at the 172nd Meeting of the electrochemical society. Honolulu, Electrochemical Society, Pennington, NJ

  26. Ramos AS, Taguchi SP, Ramos ECT, Arantes VL, Ribeiro S (2006) Mater Sci Eng A422:184

    Article  CAS  Google Scholar 

  27. Takacs L, McHenry JS (2006) J Mater Sci 41:5246

    Article  CAS  Google Scholar 

  28. Anselmi-Tamburini U, Munir Z, Kodera Y, Imai T, Ohyanagi M (2005) J Am Ceram Soc 88:1382

    Article  CAS  Google Scholar 

  29. Hofmann H, Petzow G (1986) J Less-Comm Met 117:121

    Article  CAS  Google Scholar 

  30. Mitra I, Telle R (1997) J Solid State Chem 133:25

    Article  CAS  Google Scholar 

  31. Tuffé S, Dubois J, Fantozzi G, Barbier G (1996) Int J Refract Metals Hard Mater 14:305

    Article  Google Scholar 

  32. Heian EM, Khalsa SK, Lee JW, Munir ZA, Yamamoto T, Ohyanagi M (2004) J Am Ceram Soc 87:779

    Article  CAS  Google Scholar 

  33. Gusev AI (1997) J Solid State Chem 133:205

    Article  CAS  Google Scholar 

  34. Udalov YuP, Valova EE, Ordan’yan SS (1995) Refractories (Translated from Ogneupory) 36:233

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Army Research Office (Grant #W911NF-04-01-0348) with Dr.Sheldon Cytron as program manager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya K. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudina, D.V., Hulbert, D.M., Jiang, D. et al. In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering. J Mater Sci 43, 3569–3576 (2008). https://doi.org/10.1007/s10853-008-2563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2563-8

Keywords

Navigation