Skip to main content
Log in

Microstructure development in Nb3Sn(Ti) internal tin superconducting wire

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The authors have studied the phase formation sequences in a Nb3Sn ‘internal tin’ process superconductor. Heat treatments were performed to convert the starting materials of tin, Ti–Sn, copper and niobium, to bronze and Nb3Sn. Specimens were quenched at different points of the heat treatment, followed by metallography to identify the phases present and X-ray microtomography (XMT) to investigate the void volume and distribution. An unexpected observation of the microstructure development was the uphill diffusion of tin during the Cu–Sn reactive diffusion. Some defects likely to affect the superconducting performance of the wires were observed. Microscopy revealed the presence of a Ti–Sn intermetallic compound displacing the niobium filaments, and XMT revealed the formation of long pores in the longitudinal direction. Two types of pore formation mechanism, in addition to Kirkendall pores, are proposed. The phase and microstructure development suggests that low-temperature heat treatment (below 415 °C) will have significant influence on optimising the final superconducting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yoshizaki K, Taguchi O, Fujiwara F, Imaizumi M, Wakata M, Hashimoto Y, Wakamoto K, Yamada T, Satow T (1983) IEEE Trans Magn 19:1131

    Article  Google Scholar 

  2. Fischer CM, Lee PJ, Larbalestier DC (2002) In: Advances in cryogenic engineering, vols 48a and b; vol 614, p 1008

  3. Kaufmann AR, Pickett JJ (1971) J Appl Phys 42:58

    Article  Google Scholar 

  4. Suenaga M, Klamut CJ, Higuchi N, Kuroda T (1985) IEEE Trans Magn 21:305

    Article  Google Scholar 

  5. Yoshizaki K, Wakata M, Miyashita S, Fujiwara F, Taguchi O, Imaizumi M, Hashimoto Y (1985) IEEE Trans Magn 21:301

    Article  Google Scholar 

  6. Hayase T, Kajihara M (2006) Mater Sci Eng A 433:83

    Article  Google Scholar 

  7. Osamura K, Ochiai S, Kondo S, Namatame M, Nosaki M (1986) J Mater Sci 21:1509

    Article  CAS  Google Scholar 

  8. Miyashita S, Yoshizaki K, Hashimoto Y, Sekine H, Tachikawa K (1987) IEEE Trans Magn 23:629

    Article  Google Scholar 

  9. Naka M, Schuster JC, Nakade I, Urai S (2001) J Phase Equilib 22:352

    Article  CAS  Google Scholar 

  10. Godeke A (2005) Performance Boundaries in Nb3Sn Superconductors. PrintPartners Ipskamp, Enschede. ISBN 90-365-2224-2

  11. Raynor GV (1944) Annotated equilibrium diagram series: No 2. The Institute of Metals, London

  12. Lefranc G, Muller A (1976) J Less-Common Met 45:339

    Article  CAS  Google Scholar 

  13. Tan KS (2006) PhD Thesis, University of Cambridge

  14. Pong I, Hopkins SC, Fu X, Glowacki BA, Elliott JA, Baldini A (2006) Defect Diffus Forum 258–260:294

    Google Scholar 

  15. Muller M, Schulz H, Kirchmayr H (2005) Physica C 419:115

    Article  Google Scholar 

  16. Watson IG, Lee PD, Dashwood RJ, Young P (2006) Metall Mater Trans A 37A:551

    Article  CAS  Google Scholar 

  17. Haibel A, Scheuerlein C (2007) IEEE Trans Appl Superconduct 17:34

    Article  CAS  Google Scholar 

  18. Scheuerlein C, Oberli L, Michiel D, Reichert K (2006) Voids in Nb3Sn strands observed by synchrotron absorption microtomography. Poster presented at the International Cryogenic Materials Conference, 17–21 July 2006, Prague, Czech Republic

  19. Easton DS, Kroeger DM (1979) IEEE Trans Magn 15:178

    Article  Google Scholar 

  20. Scheuerlein C, Di Michiel M, Haibel A (2007) Appl Phys Lett 90:132510

    Article  Google Scholar 

  21. Dietderich DR, Glazer J, Lea C, Hassenzahl WV, Morris JW (1985) IEEE Trans Magn 21:297

    Article  Google Scholar 

  22. Naus MT, Jewell MC, Lee PJ, Larbalestier DC (2002) In: Advances in cryogenic engineering, AIP conference proceedings, vols 48a and b; vol 614. Amer Inst Physics, Melville, NY, ISBN 0-7354-0060-1, p 1016

  23. Acharya NN (2001) J Mater Sci 36:4779

    Article  CAS  Google Scholar 

  24. Darken LS (1949) Trans Am Inst Minerals 180:430

    Google Scholar 

  25. Park H, Lee DN (2003) Metall Mater Trans A 34:531

    Article  Google Scholar 

  26. Dyson BF, Anthony TR, Turnbull D (1967) J Appl Phys 38:3408

    Article  CAS  Google Scholar 

  27. Suenaga M, Horigami O, Luhman TS (1974) Appl Phys Lett 25:624

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ian Pong would like to thank the Croucher Foundation, Hong Kong, and Simon Hopkins the EPSRC, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pong, I., Hopkins, S.C., Fu, X. et al. Microstructure development in Nb3Sn(Ti) internal tin superconducting wire. J Mater Sci 43, 3522–3530 (2008). https://doi.org/10.1007/s10853-008-2522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2522-4

Keywords

Navigation