Skip to main content
Log in

Simulation of the mechanical properties of an aluminum matrix composite using X-ray microtomography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum-based particulate-reinforced metal matrix composites (PMMCs) frequently have a heterogeneous distribution of reinforcement particles whether produced by a powder or liquid processing route. The applicability of X-ray microtomography (XMT) for the characterization of this heterogeneity, and its influence on final properties, was investigated for the case of a powder blended and extruded AA2124 matrix with Ni particulate. Three-dimensional image analysis techniques were used to quantify the embedded Ni particle size distribution and the extent and texture of clusters formed. The XMT data were exploited as a rapid method to generate a microstructurally accurate and robust three-dimensional mesh for input for finite-element modeling. Simulation of the elastoplastic response of the material showed excellent correlation with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Boselli, P.D. Pitcher, P.J. Gregson, and I. Sinclair: J. Microsc., 1999, vol. 195 (2), pp. 104–12.

    Article  CAS  Google Scholar 

  2. J. Boselli, P.D. Pitcher, P.J. Gregson, and I. Sinclair: Mater. Sci. Eng., A, 2001, vol. 300 (1–2), pp. 113–24.

    Google Scholar 

  3. R.C. Atwood, J.R. Jones, P.D. Lee, and L.L. Hench: Scripta Mater., 2004, vol. 51 (11), pp. 1029–33.

    Article  CAS  Google Scholar 

  4. S. Youssef, E. Maire, and R. Gaertner: Acta Mater., 2005, vol. 53 (3), pp. 719–30.

    Article  CAS  Google Scholar 

  5. N.C.W. Kuijpers, J. Tirel, D.N. Hanlon, and S. van der Zwaag: Mater. Characterization, 2002, vol. 48 (5), pp. 379–92.

    Article  CAS  Google Scholar 

  6. J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley: Mater. Sci. Eng., A, 2004, vol. 386, pp. 394–407.

    Google Scholar 

  7. J.Z. Yi, Y.X. Gao, P.D. Lee, H.M. Flower, and T.C. Lindley: Metall. Trans. A, 2003, vol. 34A, pp. 1879–91.

    Article  CAS  Google Scholar 

  8. M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Mater. Sci. Eng., A, 1999, vol. 266 (1–2), pp. 221–40.

    Google Scholar 

  9. M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Mater. Sci. Eng., A, 1999, vol. 265 (1–2), pp. 153–73.

    Google Scholar 

  10. S. Ghosh, Z. Nowak, and K. Lee: Acta Mater., 1997, vol. 45 (6), pp. 2215–34.

    Article  CAS  Google Scholar 

  11. P. Raghavan, S. Li, and S. Ghosh: Fin. Elem. Anal. Des., 2004, vol. 40 (12), pp. 1619–40.

    Article  Google Scholar 

  12. C. Kadar, E. Maire, A. Borbely, G. Peix, J. Lendvai, and Z. Rajkovits: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 321–25.

    Google Scholar 

  13. J.S. Chen and S. Mehraeen: Proc. IMECE, Anaheim, CA, Nov. 13–19, 2004.

  14. J. Alkemper and P.W. Voorhees: Acta Mater., 2001, vol. 49 (5), pp. 897–902.

    Article  CAS  Google Scholar 

  15. H. Singh and A.M. Gokhale: Mater. Characterization, 2005, vol. 54 (1), pp. 21–29.

    Article  CAS  Google Scholar 

  16. S. Ghosh, M. Li, S. Moorthy, and K. Lee: Mater. Sci. Eng., A, 1998, vol. 249 (1–2), pp. 62–70.

    Google Scholar 

  17. M.V. Kral and G. Spanos: Scripta Mater., 1997, vol. 36 (8), pp. 875–82.

    Article  CAS  Google Scholar 

  18. Y.X. Gao, J.Z. Yi, P.D. Lee, and T.C. Lindley: Acta Mater., 2004, vol. 52 (19), pp. 5435–49.

    Article  CAS  Google Scholar 

  19. N. Chawla, V.V. Ganesh, and B. Wunsch: Scripta Mater., 2004, vol. 51 (2), pp. 161–65.

    Article  CAS  Google Scholar 

  20. J.E. Spowart, H.M. Mullens, and B.T. Puchala: JOM, 2003, vol. 10, pp. 35–37.

    Google Scholar 

  21. R.H. Bossi, J.L. Cline, and G.E. Georgeson: Report No. WL-TR-91-4102, Wright Laboratory, 1992.

  22. J.Y. Buffiere, E. Maire, P. Cloetens, G. Lormand, and R. Fourgeres: Acta Mater., 1999, vol. 47 (5), pp. 1613–25.

    Article  CAS  Google Scholar 

  23. A. Elmoutaouakkil, G. Fuchs, P. Bergounhon, R. Peres, and F. Peyrin: J. Phys. D: Appl. Phys., 2003, vol. 36 (10A), pp. A37-A43.

    Article  CAS  Google Scholar 

  24. M. Gonzalez, G. Dominguez, and C. Bathias: ASTM J. Compos. Technol. Res., 2000, vol. 22 (1), pp. 45–48.

    Article  Google Scholar 

  25. A. Guvenilir and S.R. Stock: Fatigue Fract. Eng. Mater. Struct., 1998, vol. 21 (4), pp. 439–50.

    Article  CAS  Google Scholar 

  26. E. Maire, L. Babout, J.Y. Buffiere, and R. Fougeres: Mater. Sci. Eng., A, 2001, vols. 319–321, pp. 216–19.

    Google Scholar 

  27. L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, and C. Josserond: Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 200, pp. 273–86.

    Article  CAS  Google Scholar 

  28. L. Babout, E. Maire, and R. Fougeres: Acta Mater., 2004, vol. 52 (8), pp. 2475–87.

    Article  CAS  Google Scholar 

  29. L. Babout, P.M. Mummery, T.J. Marrow, A. Tzelepi, and P.J. Withers: Carbon, 2005, 43 (4), pp. 765–74.

    Article  CAS  Google Scholar 

  30. H. Bart-Smith, A.-F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, and H.N.G. Wadley: Acta Mater., 1998, vol. 46 (10), pp. 3583–92.

    Article  CAS  Google Scholar 

  31. J.P. Weiler, J.T. Wood, R.J. Klassen, E. Maire, R. Berkmortel, and G. Wang: Mater. Sci. Eng., A, 2005, vol. 395 (1–2), pp. 315–22.

    Google Scholar 

  32. O.B. Olurin, M. Arnold, C. Korner, and R.F. Singer: Mater. Sci. Eng., A, 2002, vol. 328 (1–2), pp. 334–43.

    Google Scholar 

  33. T.G. Nieh, K. Higashi, and J. Wadsworth: Mater. Sci. Eng., A, 2000, vol. 283 (1–2), pp. 105–10.

    Google Scholar 

  34. R.W. Hamilton, M.F. Forster, R.J. Dashwood, and P.D. Lee: Scripta Mater., 2002, vol. 46 (1), pp. 25–29.

    Article  CAS  Google Scholar 

  35. I.G. Watson, M.F. Forster, P.D. Lee, R.J. Dashwood, R.W. Hamilton, and A. Chirazi, Comp. A., 2005, vol. 36, pp. 1177–87.

    Article  CAS  Google Scholar 

  36. E.J. Garboczi: Cem. Concr. Res., 2002, vol. 32 (10), pp. 1621–38.

    Article  CAS  Google Scholar 

  37. P. Kenesei, A. Borbely, and H. Biermann: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 852–56.

    Google Scholar 

  38. J.E. Hatch: Aluminium Properties and Physical Metallurgy, 6th ed., ASM, Metals Park, OH, 1984, pp. 235–36.

    Google Scholar 

  39. E.J. Minay, H.B. McShane, and R.D. Rawlings: Intermetallics, 2004, vol. 12 (1), pp. 75–84.

    Article  CAS  Google Scholar 

  40. A.C. Kak and M. Slaney: Principles of Computerized Tomographic Imaging, SIAM, New York, NY, 2001, pp. 100–08.

    Google Scholar 

  41. L.A. Feldkamp, L.C. Davis, and J.W. Kress: J. Opt. Soc. Am. A, 1984, vol. 1, pp. 612–19.

    Article  Google Scholar 

  42. H.K. Hong, C.S. Liu, Y.P. Shiao, and B.C. Shih: J. Eng. Mater. Technol. (Trans. ASME), 2002, vol. 124 (3), pp. 314–21.

    Article  CAS  Google Scholar 

  43. L. Zhonghua, S. Schmauder, A. Wanner, and M. Dong: Scripta Metall. Mater., 1995, vol. 33 (8), pp. 1289–94.

    Article  Google Scholar 

  44. E.J. Garboczi and A.R. Day: J. Mech. Phys. Solids, 1995, vol. 43 (13), pp. 49–62.

    Google Scholar 

  45. W.E. Lorensen and H.E. Cline: Comp. Graphs, 1987, vol. 213 (1), pp. 63–69.

    Google Scholar 

  46. P.J. Withers: University of Manchester, Manchester, UK, Personal communication, Application of X-ray tomography to study fracture and crack growth workshop, Cambridge, 2005.

  47. E.E. Underwood: in Quantitative Microscopy, DeHoff and Rhines, McGraw-Hill Book Company, New York, NY, 1968, pp. 149–200

    Google Scholar 

  48. X.D. Ding, Z.H. Jiang, J. Sun, J.S. Lian, and L. Xiao: Comp. Sci. Technol., 2002, 62 (6), pp. 841–50.

    Article  CAS  Google Scholar 

  49. E. Soppa, S. Schmauder, G. Fischer, J. Brollo, and U. Weber: Comput. Mater. Sci, 2003, vol. 28 (3–4), pp. 574–86.

    Article  CAS  Google Scholar 

  50. L.Z. Sun, J.W. Ju, and H.T. Liu: Mech. Mater., 2003, vol. 35 (3–6), pp. 559–69.

    Article  Google Scholar 

  51. J. Segurado and J. LLorca: Acta Mater., vol. 53, pp. 4931–42.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Computational Aspects of Mechanical Properties of Materials,” which occurred at the 2005 TMS Annual Meeting, February 13–17, 2005, in San Francisco, CA, under the auspices of the MPMD-Computational Materials Science & Engineering (Jt. ASM-MSCTS) Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, I.G., Lee, P.D., Dashwood, R.J. et al. Simulation of the mechanical properties of an aluminum matrix composite using X-ray microtomography. Metall Mater Trans A 37, 551–558 (2006). https://doi.org/10.1007/s11661-006-0027-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0027-9

Keywords

Navigation