Skip to main content
Log in

Effect of coherency on coarsening of second-phase precipitates in Cu-base alloys

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of matrix/precipitate interface states on coarsening of Co and γ-Fe precipitates in a Cu–4 wt.%Co and a Cu–2 wt.%Fe alloy aged at 500 and 700 °C have been examined by transmission electron microscopy (TEM) observations, electrical resistivity measurements, and length-change measurements. Analyses of TEM images show that the average radius for coherent/semi-coherent transition is 6–12 nm for the Co precipitates and 10–20 nm for the γ-Fe precipitates. The coarsening rates of the Co and γ-Fe precipitates are unchanged by the transitions in coherency of the precipitates. The interface energies γ of coherent Co and γ-Fe precipitates are estimated from data on coarsening alone as 0.15 and 0.27 J m−2. From length-change measurements of the Cu–Co and Cu–Fe alloys during aging, the estimates of the isotropic misfit strains of Co and γ-Fe precipitates are −0.018 and −0.016 for the coherent interfaces and −0.013 and −0.012 for the semi-coherent interfaces. Free energy analyses for the coarsening of Co and γ-Fe precipitates reveal that the values of γ of semi-coherent Cu/Co and Cu/γ-Fe interfaces are 0.24 and 0.34 J m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Watanabe D, Higashi K, Watanabe C, Monzen R (2007) J Jpn Inst Metals 71:151

    Article  CAS  Google Scholar 

  2. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  3. Wagner C (1961) Z Elektrochem 65:581

    CAS  Google Scholar 

  4. Ardell AJ (1967) Acta Metall 15:1772

    Article  CAS  Google Scholar 

  5. Easterling KE, Miekk-Oja HM (1967) Acta Metall 15:1133

    Article  CAS  Google Scholar 

  6. Monzen R, Kita K (2002) Philos Mag Lett 82:373

    Article  CAS  Google Scholar 

  7. Iwamura S, Miura Y (2004) Acta Mater 52:591

    Article  CAS  Google Scholar 

  8. Jesser WA (1969) Philos Mag 19:993

    Article  Google Scholar 

  9. Røyset J, Ryum N (2005) Scripta Mater 52:1275

    Article  Google Scholar 

  10. Fuller CB, Seidman DN (2005) Acta Mater 53:5415

    Article  CAS  Google Scholar 

  11. Johnson WC (1984) Acta Metall 32:465

    Article  CAS  Google Scholar 

  12. Ashby MF, Brown LM (1963) Philos Mag 8:1083

    Article  Google Scholar 

  13. Ashby MF, Brown LM (1963) Philos Mag 8:1649

    Article  CAS  Google Scholar 

  14. Linde JO (1968) Helv Phys Acta 41:1007

    CAS  Google Scholar 

  15. Heinrich B, Cochran JF, Kowalewski M, Kirschner J, Celinski Z, Arrott AS, Myrtle K (1991) Phys Rev B 44:9348

    Article  CAS  Google Scholar 

  16. Kato M, Monzen R, Mori T (1978) Acta Metall 26:605

    Article  CAS  Google Scholar 

  17. Kinzoku data book (2004) Japan Institute of Metals, Maruzen, Tokyo, p 37

  18. Matsuura K, Kitamura M, Watanabe K (1977) J Jpn Inst Metals 41:1285

    Article  CAS  Google Scholar 

  19. Fujii T, Kato M, Mori T (1991) Mater Trans Jpn Inst Metals 32:229

    CAS  Google Scholar 

  20. Watanabe Y, Kato M, Sato A (1991) J Mater Sci 26:4307

    Article  CAS  Google Scholar 

  21. Ezawa T (1988) Z Metallkd 9:572

    Google Scholar 

  22. Eshelby JD (1959) Proc R Soc A 252:561

    Google Scholar 

  23. Monzen R, Watanabe C, Seo T, Sakai T (2005) Philos Mag Lett 85:603

    Article  CAS  Google Scholar 

  24. Gente C, Oehring M, Bormann R (1993) Phys Rev B 48:13244

    Article  CAS  Google Scholar 

  25. Chien CL, Liou SH, Kofalt D, Yu W, Egami T, McGuire TR (1986) Phys Rev B 33:3247

    Article  CAS  Google Scholar 

  26. Wendt H, Haasen P (1985) Scripta Metall 19:1053

    Article  CAS  Google Scholar 

  27. Kato M, Fujii T, Onaka S (1996) Mater Sci Eng A 211:95

    Article  Google Scholar 

  28. Rayne JA (1958) Phys Rev 112:1125

    Article  CAS  Google Scholar 

  29. Satoh S, Johnson WC (1992) Metall Trans A 23:2761

    Article  Google Scholar 

  30. Pope LE, Rohde RW, Percival CM (1976) Metall Trans A 7:103

    Article  Google Scholar 

  31. Shindohin data book (1997) Japan Copper and Brass Association, Tokyo, p 42

  32. Miyazaki T, Koyama T (1993) Mater Sci Eng A 169:159

    Article  Google Scholar 

  33. Ryu HJ, Hong SH, Weber J, Tundermann JH (1999) J Mater Sci 34:329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor K. Tazaki, Kanazawa University, for use of JEOL2010FEF. We also acknowledge Mr. K. Higashimine of the Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, for the TEM observation by HITACHI H9000-NAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Monzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, D., Watanabe, C. & Monzen, R. Effect of coherency on coarsening of second-phase precipitates in Cu-base alloys. J Mater Sci 43, 3946–3953 (2008). https://doi.org/10.1007/s10853-007-2373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2373-4

Keywords

Navigation