Skip to main content
Log in

Microstructure and Vickers hardness of Co/Cu multilayers fabricated by electrodeposition

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to investigate thermal stability of Co/Cu multilayers fabricated by electrodeposition, Vickers hardness tests and microstructure observations were conducted on both as-deposited and annealed Co/Cu multilayers having a layer thickness of 100 nm. The multilayers were annealed at temperatures ranging from 473 to 1,273 K for 1 h. It is confirmed that even after the annealing at 1,023 K, the multilayer maintained the high hardness (Hv231) which was comparative to that of the as-deposited Co/Cu multilayer. When the annealing temperature was higher than 1,073 K, the hardness decreased rapidly with increasing temperature. Scanning electron microscopy (SEM) observation revealed that the multilayered structures were still maintained without any layer damages after the annealing at the temperatures less than 873 K. At the cross sections of the Co/Cu multilayers annealed at > 923 K, several copper layers were fragmented. The layered structure finally disappeared by the annealing at 1,273 K. The rapid decrease in the hardness at > 1,073 K is simply understood from the annihilation of the Co/Cu interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B (1994) Acta Metall Mater 42:2467

    Article  CAS  Google Scholar 

  4. Horita H, Fujinami T, Nemoto M, Langdon TG (2001) J Mater Process Technol 117:288

    Article  CAS  Google Scholar 

  5. Vinogradov A, Hashimoto S, Kopylov VI (2003) Mater Sci Eng A 355:277

    Article  Google Scholar 

  6. Menezes S, Anderson DP (1990) J Electrochem Soc 137:440

    Article  CAS  Google Scholar 

  7. Tench DM, White JT (1991) J Electrochem Soc 138:3757

    Article  CAS  Google Scholar 

  8. Simunovich D, Schlesinger M, Snyder DD (1994) J Electrochem Soc 141:L10

    Article  CAS  Google Scholar 

  9. Clemens BM, Kung H, Barnett SA (1999) MRS Bull 24:20

    Article  CAS  Google Scholar 

  10. Kaneko Y, Mizuta Y, Nishijima Y, Hashimoto S (2005) J Mater Sci 40:3231. doi:https://doi.org/10.1007/s10853-005-2690-4

    Article  CAS  Google Scholar 

  11. Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD (1998) Scr Mater 39:555

    Article  CAS  Google Scholar 

  12. Mckeown J, Misra A, Kung H, Hoagland RG, Nastasi M (2002) Scr Mater 46:593

    Article  CAS  Google Scholar 

  13. Bennett LH, Swartzendruber LJ, Lashmore DS, Oberle R, Atzmony U, Dariel MP, Waton RE (1989) Phys Rev B 40:4633

    Article  CAS  Google Scholar 

  14. Bird KD, Schlesinger M (1995) J Electrochem Soc 142:L65

    Article  CAS  Google Scholar 

  15. Kashiwabara S, Jyoko Y, Hayashi Y (1997) Physica B 239:47

    Article  CAS  Google Scholar 

  16. Yamada A, Houga T, Ueda Y (2002) J Magn Magn Mater 239:272

    Article  CAS  Google Scholar 

  17. Weihnacht V, Peter L, Toth J, Padar J, Kerner ZS, Schneider CM, Bakonyi I (2003) J Electrochem Soc 150:C507

    Article  CAS  Google Scholar 

  18. Cziraki A, Pierron-Bohnes V, Ulhaq-Bouillet C, Toth-Kadar E, Bakonyi I (1998) Thin Solid Films 318:239

    Article  CAS  Google Scholar 

  19. Peter L, Cziraki A, Poganiy Z, Kupay Z, Uhlemann M, Herrich M, Arnold B, Bauer T, Wetzig K (2001) J Electrochem Soc 148:168

    Article  Google Scholar 

  20. Uhlemann M, Gebert A, Herrich M, Krause A, Cziraki A, Schultz L (2003) Electrochim Acta 48:3005

    Article  CAS  Google Scholar 

  21. Cziraki A, Koteles M, Peter L, Kupay Z, Padar J, Pogany L, Bakonyi I, Uhlemann M, Herrich M, Arnold B, Thomas J, Bauer HD, Wetzig K (2003) Thin Solid Films 433:237

    Article  CAS  Google Scholar 

  22. Kaneko Y, Sakakibara S, Sanda T, Hashimoto S, submitted to Mater Sci Forum

  23. Gale WF, Totemeier TC (2004) Smithells metals reference book. Elsevier, Oxford

    Google Scholar 

  24. Bobeth M, Hecker M, Pompe C, Schneider CM, Thomas J, Ullrich J, Wetzig K (2001) Z Metallkd 92:810

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Uchida and N. Satoh (Osaka City University) for helping the TEM observations of the multilayers. This work was financially supported by the MEXT Grants-In-Aid for Scientific Research (#16760573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kaneko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, Y., Sakakibara, H. & Hashimoto, S. Microstructure and Vickers hardness of Co/Cu multilayers fabricated by electrodeposition. J Mater Sci 43, 3931–3937 (2008). https://doi.org/10.1007/s10853-007-2371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2371-6

Keywords

Navigation