Skip to main content

Reaction–formation mechanisms and microstructure evolution of biomorphic SiC

Abstract

Biomorphic SiC is fabricated by liquid Si infiltration of a carbon preform obtained from pyrolized wood that can be selected for tailored properties. The microstructure and reaction kinetics of biomorphic SiC have been investigated by means of TEM, SEM, EBSD, and partial infiltration experiments. The microstructure of the material consists of SiC and Si and a small fraction of unreacted C. The SiC follows a bimodal size distribution of grains in the micrometer and the nanometer range with no preferential orientation. The infiltration-reaction constant has been determined as 18 × 10−3 s−1. These observations suggest that the main mechanism for SiC formation is solution–precipitation in the first stage of growth. If the pores in the wood are small enough they can be choked by SiC grains that act as a diffusion barrier between Si and C. If that is the case, Si will diffuse through SiC forming SiC grains in the nanometer range.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Martinez-Fernandez J, Varela-Feria FM, Singh M (2000) Scripta Mater 43:813

    Article  CAS  Google Scholar 

  2. Singh M, Behrendt DR (1994) J Mater Res 9:1701

    Article  CAS  Google Scholar 

  3. Singh M, Behrendt DR (1995) Mater Sci Eng A 194:193

    Article  Google Scholar 

  4. Byrne CE, Nagle DC (1997) Carbon 35:259

    Article  CAS  Google Scholar 

  5. Byrne CE, Nagle DC (1997) Carbon 35:267

    Article  CAS  Google Scholar 

  6. Byrne CE, Nagle DC (1997) Mater Res Innov 1:137

    Article  CAS  Google Scholar 

  7. Martinez-Fernandez J, De Arellano-Lopez AR, Varela-Feria FM, Singh M (2001) Procedimiento para la Fabricación de Carburo de Silicio a partir de Precursores Vegetales. vol. P200102278. Spain

  8. Varela-Feria FM, Martinez-Fernandez J, De Arellano-Lopez AR, Singh M (2002) J Eur Ceram Soc 22:2719

    Article  CAS  Google Scholar 

  9. Varela-Feria FM, Lopez-Robledo MJ, Martinez-Fernandez J, De Arellano-Lopez AR, Singh M (2002) Ceram Eng Sci Proc 23:681

    CAS  Google Scholar 

  10. Martinez-Fernandez J, Munoz A, De Arellano-Lopez AR, Varela-Feria FM, Dominguez-Rodriguez A, Singh M (2003) Acta Mater 51:3259

    Article  CAS  Google Scholar 

  11. De Arellano-Lopez AR, Martinez-Fernandez J, Gonzalez P, Dominguez C, Fernandez-Quero V, Singh M (2004) Int J Appl Ceram Technol 1:56

    Article  Google Scholar 

  12. Gonzalez P, Serra J, Liste S, Chiussi S, Leon B, Perez-Amor M, Martinez-Fernandez J, De Arellano-Lopez AR, Varela-Feria FM (2003) Biomaterials 24:4827

    Article  CAS  Google Scholar 

  13. Zollfrank C, Sieber H (2005) J Am Ceram Soc 88:51

    CAS  Article  Google Scholar 

  14. Coates DG (1967) Philos Mag 16:1179

    Article  CAS  Google Scholar 

  15. Dingley DJ (2000) In: Schwartz AJ, Kumar M, Adams BL (eds) Electron backscatter diffraction in materials science. Plenum, New York

    Google Scholar 

  16. Kocks UF, Tomé CN, Wenk H-R (1998) Texture and anisotropy. Cambridge University Press, Cambridge

    Google Scholar 

  17. Randle V, Engler O (2000) Introduction to texture analysis. CRC Press, New York

    Google Scholar 

  18. Venables JA, Binjaya R (1977) Philos Mag 35:1317

    Article  CAS  Google Scholar 

  19. Wright SI, Adams BL (1991) Textures Microstructures 14:273

    Article  Google Scholar 

  20. Wright SI, Adams BL (1992) Metall Trans A Phys Metall Mater Sci 23:759

    Article  Google Scholar 

  21. Greil P, Lifka T, Kaindl A (1998) J Eur Ceram Soc 18:1961

    Article  CAS  Google Scholar 

  22. Singh M, Martinez-Fernandez J, De Arellano-Lopez AR (2003) Curr Opin Solid State Mater Sci 7:247

    Article  CAS  Google Scholar 

  23. Bhagat RB, Singh M (1994) In: Singh M, Lewins D (eds) In-situ composites: science and technology. The Minerals, Metals and Materials Society, p 135

  24. Gern FH, Kochendorfer R (1997) Compos Part A Appl Sci 28:355

    Google Scholar 

  25. Greil P (2001) J Eur Ceram Soc 21:105

    Article  CAS  Google Scholar 

  26. Sangsuwan P, Tewari SN, Gatica JE, Singh M, Dickerson R (1999) Metall Mater Trans A 30:933

    Article  Google Scholar 

  27. Gerwien ML (1986) In: Warucke R (ed) Gmelin handbook of inorganic chemistry, 8th edn. Springer-Verlag, Berlin

    Google Scholar 

  28. Grabmaier J, Ciszek TF (1981) Silicon. Springer-Verlag, Berlin

    Google Scholar 

  29. Hon MH, Davis RF (1979) J Mater Sci 14:2411 (DOI: 10.1007/BF00737031)

  30. Weast RCE (1974) Handbook of chemistry and physics. CRC Press, Cleveland

    Google Scholar 

  31. Hon MH, Davis RF, Newbury DE (1980) J Mater Sci 15:2073 (DOI: 10.1007/BF00550634)

  32. Fitzer E, Fritz W, Gadow R (1985) Chem Ing Tech 57:737

    Article  CAS  Google Scholar 

  33. Fitzer E, Gadow R (1986) Am Ceram Soc Bull 65:326

    CAS  Google Scholar 

  34. Zhou H, Singh RN (1995) J Am Ceram Soc 78:2456

    Article  CAS  Google Scholar 

  35. Pampuch R, Bialoskorski J, Walasek E (1987) Ceram Int 13:63

    Article  CAS  Google Scholar 

  36. Pampuch R, Walasek E, Bialoskorski J (1986) Ceram Int 12:99

    Article  CAS  Google Scholar 

  37. Hong JD, Davis RF (1980) J Am Ceram Soc 63:546

    Article  CAS  Google Scholar 

  38. Hong JD, Davis RF, Newbury DE (1981) J Mater Sci 16:2485 (DOI: 10.1007/BF01113585)

    Google Scholar 

  39. Hong JD, Hon MH, Davis RF (1979) Am Ceram Soc Bull 58:348

    Google Scholar 

  40. Bartlett RW, Nelson WE, Halden FA (1967) J Electrochem Soc 114:1149

    Article  CAS  Google Scholar 

  41. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  42. Scace RI, Slack GA (1959) J Chem Phys 30:1551

    Article  CAS  Google Scholar 

  43. Gnesin GG, Raichenko AI (1973) Poroshkovaya Metallurgiya 5:35

    Google Scholar 

  44. Kleykamp H, Schumacher G (1993) Ber Bunsen-Ges Phys Chem 97:799

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Technology through Grant MAT 2006-13005-C. The authors are grateful to the CITIUS at the University of Seville for the use of their electron microscopy facilities. J.R.-R. is grateful to the Junta de Andalucía for his pre-doctoral Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Ramírez-Rico.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varela-Feria, F.M., Ramírez-Rico, J., de Arellano-López, A.R. et al. Reaction–formation mechanisms and microstructure evolution of biomorphic SiC. J Mater Sci 43, 933–941 (2008). https://doi.org/10.1007/s10853-007-2207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2207-4

Keywords

  • Small Channel
  • Molten Silicon
  • Reactive Infiltration
  • Carbon Preform
  • Wood Pyrolysis