Skip to main content
Log in

Characterization, microstructure, and gas sensitive response behavior of PEG/lithium salt polymer electrolyte films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A composite polymer electrolyte film was prepared by dissolving polyethylene glycol (PEG) with different molecular weight in acetonitrile, and vapor-induced response behavior was investigated upon exposure to various chemical environments. The effect of lithium concentrations on ionic conductivity and response was discussed. The surface microporous structures and vapor sensitive conductivity of the films in the case of poly(vinylidene fluoride) (PVDF) were examined with the PVDF content changed. The crystalline and micro-phase isolation behavior were characterized by a differential scanning calorimeter, an environmental scanning electron microscope, a polarization microscope and a wide-angle X-ray diffraction. The experimental results indicated that PEG/Li+ salt composite films exhibited preferential responsive characteristics. The responsivities to ethanoic acid, chloroform, and acetone vapors were enhanced with molecular weight of PEG increased. The conductivity was increased at a higher lithium salt concentration, and also enhanced with PEG content increased, while the responsivities decreased. The formation of microporous structures on the surface of the mixed PEG/PVDF composite films enlarged their specific area and strikingly improved the responsive performances. The changes in conduction behavior were explained from the viewpoint of the swelling and free volume theories as well as a hydrogen bond interaction, combined with the structural and morphological analyses. The introduction of an ionogenic matter also has an important effect on ionic conductivity and responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  2. Meyer WH (1998) Adv Mater 10:439

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  4. Amand MB, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids electrodes and electrolytes. North-Holland Amsterdam, New York, p 131

  5. Kim YW, Lee W, Choi BK (2000) Electrochimica Acta 45:147

    Google Scholar 

  6. Zhou H, Gu N, Dong S (1998) J Electroanal Chem 441:153

    Article  CAS  Google Scholar 

  7. Dong S, Gu N, Zhou H (1998) J Electroanal Chem 441:95

    Article  CAS  Google Scholar 

  8. Qian XM, Gu NY, Cheng ZL (2001) Electroanal Acta 46:1829

    Article  CAS  Google Scholar 

  9. Yu WX, Yong SW, Guo GR (1994) Chin J National Uni Defense Technol 16:1

    Google Scholar 

  10. Zhao ZC, Liu K, Zheng H (2005) Instrument Techn Sens 3:1

    Google Scholar 

  11. Xia Y, Lu YL, Sun LC (2005) Comput Eng Sci 27:25

    Google Scholar 

  12. Li J, Xi JY, Song Q, Tang XZ (2005) Chin Sci Bull 3:305

    Google Scholar 

  13. Kumar GG, Kim P, Nahm K, Elizabeth RN (2007) J Membr Sci 303:126

    Article  CAS  Google Scholar 

  14. Hilal N, Ogunbiyi OO, Miles NJ, Nigmatullin R (2005) Sep Sci Technol 40:1957

    Article  CAS  Google Scholar 

  15. Xu Z, Li L, Wu F, Tan S, Zhang Z (2005) J Membr Sci 255:125

    Article  CAS  Google Scholar 

  16. Kim JW, Ji KS, Lee JP, Park JW (2003) J Power Sources 119–121:415

    Article  Google Scholar 

  17. Ahn JH, Wang GX, Liu HK, Dou SX (2003) J Power Sources 119–121:422

    Article  Google Scholar 

  18. Liang XH, Guo YQ, Gu LZ, Ding EY (1995) Macromolecules 28:6551

    Article  CAS  Google Scholar 

  19. Chen QC, Deng HY, Ma YM (2002) Chin Surfactant Detergent Cosmet 32:2

    Google Scholar 

  20. Gu NY, Qian XM, Cheng ZL, Jiang JG, Yang XR, Dong SJ (2001) Chem Res Chin Univ 22:1403

    CAS  Google Scholar 

  21. Rodgers PA (1993) J Appl Polym Sci 50:2075

    Article  CAS  Google Scholar 

  22. Luo YL, Wang GC, Zhang BY, Zhang ZP (1998) European Polym J 34:1221

    Article  CAS  Google Scholar 

  23. Liu YX, Luo YL (2006) Mater Res Innov 10:52

    Google Scholar 

  24. Luo J, Wang P, Li J, Xie X, Fan C, He C, Zhong Y (2006) J Bionic Eng 23:125

    CAS  Google Scholar 

  25. Zhao WY, Wang YJ (2003) Functional polymer materials chemistry, 2nd edn. Chem Ind Press, Beijing, p 53

  26. Nishio K, Tsuchiya T (2001) Sol Energ Mat Sol C 68:295

    Article  CAS  Google Scholar 

  27. Bonino F, Croce F, Panero S (1994) Solid State Ionics 70–71:654

    Article  Google Scholar 

  28. Ikeda Y, Hiraoka T, Ohta S (2004) Solid State Ionics 175:261

    Article  CAS  Google Scholar 

  29. Chen J, Tsubokawa N (2000) Poly Adv Tech 11:101

    Article  CAS  Google Scholar 

  30. Tsubokawa N, Yukio S, Okazaki M (1999) Poly Bull 42:425

    Article  CAS  Google Scholar 

  31. Saito Y, Kataoka H, Stephan AM (2001) Macromolecules 34:6955

    Article  CAS  Google Scholar 

  32. Carvalho LM, Guegan P, Cheradame H, Gomes AS (2000) Eur Polym J 36:401

    Article  CAS  Google Scholar 

  33. Usami H, Takagi K, Sawaki Y (1992) J Chem Soc: Faraday Trans 88:77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Wang, S. & Li, Z. Characterization, microstructure, and gas sensitive response behavior of PEG/lithium salt polymer electrolyte films. J Mater Sci 43, 174–184 (2008). https://doi.org/10.1007/s10853-007-2125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2125-5

Keywords

Navigation