Skip to main content
Log in

Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate temperature dependence of electrical conductivity of carbon nanotube (CNT)/polyester nanocomposites from room temperature to 77 K using four-point probe test method. To produce nanocomposites, various types and amounts of CNTs (0.1, 0.3 and 0.5 wt.%) were dispersed via 3-roll mill technique within a specially formulized resin blend of thermoset polyesters. CNTs used in the study include multi walled carbon nanotubes (MWCNT) and double-walled carbon nanotubes (DWCNT) with and without amine functional groups (–NH2). It was observed that the incorporation of carbon nanotubes into resin blend yields electrically percolating networks and electrical conductivity of the resulting nanocomposites increases with increasing amount of nanotubes. However, nanocomposites containing amino functionalized carbon nanotubes exhibit relatively lower electrical conductivity compared to those with non-functionalized carbon nanotubes. To get better interpretation of the mechanism leading to conductive network via CNTs with and without amine functional groups, the experimental results were fitted to fluctuation-induced tunneling through the barriers between the metallic regions model. It was found that the results are in good agreement with prediction of proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Nature (London) 354:56

    Article  CAS  Google Scholar 

  2. Balasubramanian K, Burghard M (2005) Small 1(2):180

    Article  CAS  Google Scholar 

  3. Khare R, Bose S (2005) J Min Mater Character Eng 4:31

    Google Scholar 

  4. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637

    Article  CAS  Google Scholar 

  5. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62:1993

    Article  CAS  Google Scholar 

  6. Kim P, Shi L, Majumdar A, Maceuen PL (2001) Phys Rev Lett 87:5502

    Google Scholar 

  7. Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP (2005) Polymer 46:877

    Article  CAS  Google Scholar 

  8. Sandler J, Schaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967

    Article  CAS  Google Scholar 

  9. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37:9048

    Article  CAS  Google Scholar 

  10. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Polymer 47:2036

    Article  CAS  Google Scholar 

  11. Kymakis E, Alexandaou I, Amaratunga GAJ (2002) Synthetic Met 127:59

    Article  CAS  Google Scholar 

  12. Astorga HR, Mendoza D (2005) Opt Mater 27:1228

    Article  CAS  Google Scholar 

  13. Sandler JKW, Kirk JE, Kinloch IA, Schaffer MSP, Windle AH (2003) Polymer 44:893

    Article  Google Scholar 

  14. Jiang X, Bin Y, Matsuo M (2005) Polymer 46:7418

    Article  CAS  Google Scholar 

  15. Sheng P (1980) Phys Rev B 21:2180

    Article  CAS  Google Scholar 

  16. Bockrath M, Cobden DH, Lu J, Rinzler AG, Smalley RE, Balemts L, Mcquen PL (1999) Nature 397:598–601

    Article  CAS  Google Scholar 

  17. Mischenko EG, Andreev AV, Glazman LI (2001) Phys Rev Lett 87:246801

    Article  Google Scholar 

  18. Meyorsan B, Smith FW (1980) Solid State Commun 34:531

    Article  Google Scholar 

  19. Mott NF, Davis EA (1979) In: Electronic processes in Non-Crystalline Materials Clarendon, Oxford, p 231

  20. Kim GT, Jhang SH, Park JG, Park YW, Roth S (2001) Synthetic Met 117:123

    Article  CAS  Google Scholar 

  21. Sichel EK, Sheng P, Gittlemann JI, Bozowski S (1981) Phys Rev B 24:6131

    Article  CAS  Google Scholar 

  22. Kymakis E, Amaratunga GAJ (2006) J Appl Phys 99:084302

    Article  Google Scholar 

  23. Thostenson ET, Chouj TW (2003) Phys D: Appl Phys 36:573–582

    Article  CAS  Google Scholar 

  24. Bajpai A, Nigam AK (2007) Phys Rev B 75:064403

    Article  Google Scholar 

Download references

Acknowledgement

Authors acknowledge the financial support from TÜBITAK-JÜLİCH 5 Project. Also, L.O. acknowledges support from the Turkish Academy of Sciences, in the framework of the Young Scientist Award Program (LO/TUBA-GEBIP/2002-1-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Tanoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simsek, Y., Ozyuzer, L., Seyhan, A.T. et al. Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. J Mater Sci 42, 9689–9695 (2007). https://doi.org/10.1007/s10853-007-1943-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1943-9

Keywords

Navigation