Skip to main content
Log in

Effect of Al2O3 concentration on zirconolite (Ca(Zr,Hf)Ti2O7) crystallization in (TiO2,ZrO2,HfO2)-rich SiO2–Al2O3–CaO–Na2O glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass-ceramic matrices containing zirconolite (nominally Ca(Zr,Hf)Ti2O7) crystals in their bulk that would incorporate high proportions of minor actinides (Np, Am, Cm) or plutonium could be envisaged for their immobilization. Zirconolite-based glass-ceramics can be prepared by controlled crystallization of zirconolite in glasses belonging to SiO2–Al2O3–CaO–Na2O–TiO2–ZrO2–HfO2 system. In this study, neodymium was used as trivalent actinides surrogate. Increasing Al2O3 concentration in glass composition had a strong effect on the nucleation rate I z of zirconolite crystals in the bulk, on the amount of neodymium incorporated in zirconolite phase and on the crystal growth rate of silicate phases (titanite + anorthite) from glass surface. These results could be explained by the existence of competition—in favor of aluminum—between Al3+ and (Ti4+, Zr4+, Hf4+) ions for their association with charge compensators cations to facilitate their incorporation in the glassy network. Differential thermal analysis (DTA) was used to study exothermal effects associated with bulk and surface crystallization. 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra showed that aluminum enters glasses network predominantly in 4-fold coordination. Neodymium optical absorption and fluorescence spectroscopies showed that the Al2O3 concentration changes performed in this study had not significant effect on Nd3+ ions environment in glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee WE, Ojovan MI, Stennet MC, Hyatt NC (2006) Adv Appl Ceram 105:3

    Article  CAS  Google Scholar 

  2. Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilisation. Elsevier, Oxford, UK

    Google Scholar 

  3. Donald IW, Metcalfe BL, Taylor RNJ (1997) J Mater Sci 32:5851

    Article  CAS  Google Scholar 

  4. Caurant D, Loiseau P, Aubin-Chevaldonnet V, Gourier D, Majérus O, Bardez I, In: Keister JE (ed) Nuclear Materials Research Developments, Ceramics, Glass-Ceramics And Glasses For Immobilization Of High-Level Nuclear Wastes. Nova Science Publishers, Hauppauge, NY, USA (In Press)

  5. Guillaumont R (2004) C R Chimie 7:1129

    CAS  Google Scholar 

  6. Fillet C, Advocat T, Bart F, Leturcq G, Rabiller H (2004) C R Chimie 7:1165

    CAS  Google Scholar 

  7. Guy C, Audubert F, Lartigue J-E, Latrille C, Advocat T, Fillet C (2002) C R Physique, 3:827

    Article  CAS  Google Scholar 

  8. Dacheux N, Clavier N, Robisson A-C, Terra O, Audubert F, Lartigue J-E, Guy C (2004) C R Chimie 7:1141

    CAS  Google Scholar 

  9. Aubin-Chevaldonnet V, Caurant D, Dannoux A, Gourier D, Charpentier T, Mazerolles L, Advocat T (2007) J. Nucl. Mater. 366:137

    Article  CAS  Google Scholar 

  10. Madic C, Lecomte M, Baron P, Boullis B (2002) C R Physique 3:797

    Article  CAS  Google Scholar 

  11. Boullis B (2002) Clefs Cea 46:18

    CAS  Google Scholar 

  12. Ochkin AV, Stefanovsky SV, Rovny SI (2003) Mat Res Soc Symp Proc 757:315

    CAS  Google Scholar 

  13. Ochkin AV, Stefanovsky SV, Ptashkin AG, Mikhailenko NS, Kirjanova OI (2004) Mat Res Soc Symp Proc 824:267

    CAS  Google Scholar 

  14. Boullis B (1997) In: Turlay R (ed) Société Française De Physique, Les Editions De Physique. Les Ullis, France, p 69

    Google Scholar 

  15. Soulet S, Carpena J, Chaumont J, Kaitasov O, Ruault M-O, Krupa J-C (2001) Nucl Instrum Meth B 184:383

    Article  CAS  Google Scholar 

  16. Yudinstev SV (2003) Geol Ore Deposits 45:151

    Google Scholar 

  17. Loiseau P, Caurant D, Majérus O, Baffier N, Fillet C (2003) J Mater Sci 38:843

    Article  CAS  Google Scholar 

  18. Loiseau P, Caurant D, Majérus O, Baffier N, Mazerolles L, Fillet C (2002) Phys Chem Glasses 43C:195

    Google Scholar 

  19. Loiseau P, Caurant D, Baffier N, Mazerolles L, Fillet C (2001) Mat Res Soc Symp Proc 663:179

    Google Scholar 

  20. Loiseau P, Caurant D, Majérus O, Baffier N, Fillet C (2004) Mat Res Soc Symp Proc 807:333

    CAS  Google Scholar 

  21. Caurant D, Majérus O, Loiseau P, Bardez I, Baffier N, Dussossoy JL (2006) J Nucl Mater 354:143

    Article  CAS  Google Scholar 

  22. Loiseau P, Phd Thesis, Université Paris VI (France), 2001

  23. Loiseau P, Caurant D, Baffier N, Mazerolles L, Fillet C (2004) J Nucl Mater 335:14

    Article  CAS  Google Scholar 

  24. Fielding PE, White TJ (1987) J Mater Res 2:387

    CAS  Google Scholar 

  25. Loiseau P, Caurant D, Baffier N, Fillet C (2003) Mat Res Soc Symp Proc 757:243

    CAS  Google Scholar 

  26. Rossell HJ (1992) J Solid State Chem 99:38

    Article  CAS  Google Scholar 

  27. Begg PD, Vance ER, Day RA, Hambley M, Conradson SD (1997) Mat Res Soc Symp Proc 465:325

    CAS  Google Scholar 

  28. Jorion F, Deschanels X, Advocat T, Desmouliere F, Cachia JN, Peuget S, Roudil D, Leturcq G (2006) Nucl Sci Eng 153:262

    CAS  Google Scholar 

  29. Leturcq G, Mcglinn PJ, Barbe C, Blackford MG, Finnie KS (2005) Appl Geochem 20:899

    Article  CAS  Google Scholar 

  30. Mcglinn PJ, Advocat T, Leturcq G, Mcleod TI, Aly Z, Yee P (2006) Mat Res Soc Symp Proc 932:575

    CAS  Google Scholar 

  31. Smith KL, Zhang Z, Mcglinn P, Attard D, Li H, Lumpkin GR, Colella M, Mcleod T, Aly Z, Loi E, Leung S, Hart KP, Ridgway M, Weber WJ, Thevuthasan S (2003) Mat Res Soc Symp Proc 757:289

    CAS  Google Scholar 

  32. Smith KL, Lumpkin GR (1993) In: Boland JN, And Fitzgerald JD (eds) defects and processes in the solid state: geoscience applications. Elsevier, Amsterdam, Netherlands, p. 401

    Google Scholar 

  33. Loiseau P, Caurant D, Majérus O, Baffier N, Fillet C (2003) J Mater Sci 38:853

    Article  CAS  Google Scholar 

  34. Loiseau P, Caurant D, Bardez I, Majérus O, Baffier N, Fillet C (2003) Mat Res Soc Symp Proc 757:281

    CAS  Google Scholar 

  35. Loiseau P, Caurant D, Baffier N, Fillet C (2003) Phys Chem Glasses 43C:201

    Google Scholar 

  36. Man PP (1993) Mol Phys 78:307

    Article  CAS  Google Scholar 

  37. Loiseau P, Caurant D, Baffier N, Fillet C (2001) Mat Res Soc Symp Proc 663:169

    Google Scholar 

  38. Dymnikov AA, Przhevuskii AK (1997) J Non-Cryst Solids 215:83

    Article  CAS  Google Scholar 

  39. Gatterer K (1997) In: Wright AC, Feller SA, And Hannon AC (eds) Borates glasses, crystals and melts. Alden, Oxford, UK, p 384

    Google Scholar 

  40. Gatterer K, Pucker G, Jantscher W, Fritzer HP, Arafa S (1998) J Non-Cryst Solids 231:189

    Article  CAS  Google Scholar 

  41. Bardez I, Caurant D, Loiseau P, Baffier N, Dussossoy JL, Gervais C, Ribot F, Neuville DR (2005) Phys Chem Glasses 46:320

    CAS  Google Scholar 

  42. Quintas A, Majérus O, Lenoir M, Caurant D, Klementiev K, Webb A, Dussossoy J-L, J Non-Cryst Solids (In Press)

  43. Viana B, Lejus AM, Saber D, Duxin N, Vivien D (1994) Opt Mater 3:307

    Article  CAS  Google Scholar 

  44. Galoisy L, Pelegrin E, Arrio M-A, Ildefonse P, Calas G (1999) J Am Ceram Soc 82:2219

    Article  CAS  Google Scholar 

  45. Caulder DL, Booth CH, Bucher JJ, Edelstein NM, Liu P, Lukens WW, Rao L, Shuh DK, Davis LL, Darab JG, Li H, Li L, Strachan DMs, 219th American chemical society national meeting. Division of nuclear chemistry and technology. Symposium on nuclear waste remediation and long term storage. San Francisco, 26–30 March 2000 (Poster Session)

  46. Engelhardt G, Michel D (1987) In: High resolution solid-state Nmr in silicates and zeolites. Wiley, NewYork

  47. Smith ME (1993) Appl Magn Reson 4:1

    Article  CAS  Google Scholar 

  48. Stebbins JF (1995) In: Ahrens TJ (ed) Handbook Of Physical Constants 2. American Geophysical Union, Washington D.C., p 303

  49. Jäger C (1999) In: Bach H, Krause D (eds) Analysis of the composition and structure of glass and glass ceramics. Springer-Verlag, Berlin, Germany, p 197

  50. Kentgens APM (1997) Geoderma 80:271

    Article  CAS  Google Scholar 

  51. Ollier N, Charpentier T, Boizot B, Petite G (2004) J Phys Condens Matter 16:7625

    Article  CAS  Google Scholar 

  52. Koga N, Sestak J, Strnad Z (1992) Thermochim Acta 203:361

    Article  CAS  Google Scholar 

  53. Xu XJ, Ray CS, Day DE (1991) J Amer Ceram Soc 74:909

    Article  CAS  Google Scholar 

  54. Osborn EF, Muan A (1964) In: Phase Diagrams For Ceramists. The American Ceramic Society, Columbus, Oh, p 219

  55. Farges F, Ponader CW, Brown GE (1991) Geochim Cosmochim Acta 55:1563

    Article  CAS  Google Scholar 

  56. Cormier L, Calas G, Gaskell PH (1997) J Phys Condens Matter 9:10129

    Article  CAS  Google Scholar 

  57. Galoisy L, Cormier L, Rossano S, Ramos A, Calas G, Gaskell P, Le Grand M (2000) Mineral Mag 64:207

    Article  Google Scholar 

  58. Cormier L, Gaskell PH, Calas G, Zhao J, Soper AK (1997) Physica B 234–236:393

    Article  Google Scholar 

  59. Caurant D, Bardez I, Loiseau P (Submitted To J Mater Sci)

Download references

Acknowledgements

The CEA (Commissariat à l’Energie Atomique) and the French Group Nomade are gratefully acknowledged for their financial supports to this study. The authors would like also to thank Prof. G. Bodenhausen (Ecole Normale Supérieure, Paris) who made possible the 27Al MAS NMR experiment at 14.1 T. The authors also thank Dr. T. Charpentier and Dr. M. Gaillard (CEA Saclay, France) for recording of 27Al 3QMAS NMR spectrum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Caurant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caurant, D., Loiseau, P., Bardez, I. et al. Effect of Al2O3 concentration on zirconolite (Ca(Zr,Hf)Ti2O7) crystallization in (TiO2,ZrO2,HfO2)-rich SiO2–Al2O3–CaO–Na2O glasses. J Mater Sci 42, 8558–8570 (2007). https://doi.org/10.1007/s10853-007-1810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1810-8

Keywords

Navigation