Skip to main content
Log in

Effects of microalloying on the isothermal and non-isothermal crystallization behaviors of TiZrSi-based metallic glasses

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding glass formation behaviors of Ti-based metallic glasses (MGs) which contain only nontoxic elements is of great importance not only to unveiling the glass formation mechanism in MGs but also to the application of MGs as biomaterials. In this work, to examine the effects of microalloying on glass formation in toxic-element-free TiZrSi-based MGs, both isothermal and non-isothermal crystallization behaviors of Ti42Zr40Si15Ta3, Ti42Zr40Si15Sn3, and Ti42Zr40Si10Sn3Ge5 MGs are characterized. The Avrami exponents n obtained from isothermal crystallization processes for Ti42Zr40Si15Ta3, Ti42Zr40Si15Sn3, and Ti42Zr40Si10Sn3Ge5 MGs are 2.54 ~ 2.90, 2.72 ~ 3.19, and 2.80 ~ 3.35, respectively. The isothermal crystallization activation energies \(E_{{{\text{c}}1}}\) for Ti42Zr40Si15Ta3, Ti42Zr40Si15Sn3, and Ti42Zr40Si10Sn3Ge5 MGs are also derived as 259.89 ± 19.45 kJ/mol, 262.39 ± 15.80 kJ/mol, and 359.25 ± 17.21 kJ/mol, respectively. The non-isothermal crystallization activation energies \(E_{{{\text{c}}2}}\) obtained from continuous heating tests for Ti42Zr40Si15Ta3, Ti42Zr40Si15Sn3, and Ti42Zr40Si10Sn3Ge5 MGs are estimated as 535.84 ± 27.35 kJ/mol, 660.46 ± 42.15 kJ/mol, and 473.65 ± 48.04 kJ/mol, respectively. Based on the crystallization activation energies and the Avrami exponents, the isothermal crystallization kinetics of all the 3 TiZrSi-based MGs are inferred to be interface-controlled crystal growth with negligible nucleation rate. As to the non-isothermal crystallization kinetics, it is found that the substitution of Ta by Sn does not alter much the contributions of nucleation and growth in crystallization and that the substitution of Si by Ge in the Ti42Zr40Si10Sn3Ge5 MG significantly reduces the contribution of nucleation. These results would help to advance current knowledge on glass formation in TiZrSi-based MGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Klement W, Willens RH, Duwez POL (1960) Non-crystalline structure in solidified gold-silicon alloys. Nature 187:869–870

    Article  CAS  Google Scholar 

  2. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R Rep 44:45–89

    Article  CAS  Google Scholar 

  3. Li HX, Lu ZC, Wang SL, Wu Y, Lu ZP (2019) Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Prog Mater Sci 103:235–318

    Article  CAS  Google Scholar 

  4. Zhang M, Song YQ, Lin HJ, Li Z, Li W (2022) A Brief introduction on the development of Ti-based metallic glasses. Front Mater 8:814629

    Article  Google Scholar 

  5. Gong P, Deng L, Jin JS, Wang SB, Wang XY, Yao KF (2016) Review on the research and development of Ti-based bulk metallic glasses. Metals 6:264

    Article  Google Scholar 

  6. Tanner LE, Ray R (1977) Physical properties of Ti50Be40Zr10 glass. Scr Metall 11:783–789

    Article  CAS  Google Scholar 

  7. Zhao SF, Chen N, Gong P, Yao KF (2016) Centimeter-sized quaternary ti-based bulk metallic glasses with high Ti content of 50 at%. Adv Eng Mater 18:231–235

    Article  CAS  Google Scholar 

  8. Gong P, Yao KF, Wang X, Shao Y (2012) Centimeter-sized Ti-based bulk metallic glass with high specific strength. Prog Nat Sci Mater Int 22:401–406

    Article  Google Scholar 

  9. Gu JL, Yang XL, Zhang AL, Shao Y, Zhao SF, Yao KF (2019) Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance. J Non-Cryst Solids 512:206–210

    Article  CAS  Google Scholar 

  10. Zhang T, Inoue A, Masumoto T (1994) Amorphous (Ti, Zr, Hf)NiCu ternary alloys with a wide supercooled liquid region. Mater Sci Eng A 181–182:1423–1426

    Article  Google Scholar 

  11. Inoue A, Nishiyama N, Amiya K, Zhang T, Masumoto T (1994) Ti-based amorphous alloys with a wide supercooled liquid region. Mater Lett 19:131–135

    Article  CAS  Google Scholar 

  12. Haratian S, Haddad-Sabzevar M (2015) Thermal stability and non-isothermal crystallization kinetics of Ti41.5Cu42.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass. J Non-Cryst Solids 429:164–170

    Article  CAS  Google Scholar 

  13. Kishimura H, Matsumoto H (2011) Fabrication of Ti-Cu-Ni-Al amorphous alloys by mechanical alloying and mechanical milling. J Alloy Compd 509:4386–4389

    Article  CAS  Google Scholar 

  14. Amiya K, Nishiyama N, Inoue A, Masumoto T (1994) Mechanical strength and thermal stability of Ti-based amorphous alloys with large glass-forming ability. Mater Sci Eng A 179–180:692–696

    Article  Google Scholar 

  15. Pang SJ, Liu Y, Li HF, Sun LL, Li Y, Zhang T (2015) New Ti-based Ti-Cu-Zr-Fe-Sn-Si-Ag bulk metallic glass for biomedical applications. J Alloy Compd 625:323–327

    Article  CAS  Google Scholar 

  16. Qin FX, Wang XM, Xie GQ, Inoue A (2008) Distinct plastic strain of Ni-free Ti-Zr-Cu-Pd-Nb bulk metallic glasses with potential for biomedical applications. Intermetallics 16:1026–1030

    Article  CAS  Google Scholar 

  17. Wang ZR, Dong DD, Qiang JB, Wang Q, Wang YM, Dong C (2013) Ti-based glassy alloys in Ti-Cu-Zr-Sn system. Sci China Phys Mech Astron 56:1419–1422

    Article  CAS  Google Scholar 

  18. Kuball A, Gross O, Bochtler B, Adam B, Ruschel L, Zamanzade M, Busch R (2019) Development and characterization of titanium-based bulk metallic glasses. J Alloy Compd 790:337–346

    Article  CAS  Google Scholar 

  19. Oak J-J, Inoue A (2007) Attempt to develop Ti-based amorphous alloys for biomaterials. Mater Sci Eng A 449–451:220–224

    Article  CAS  Google Scholar 

  20. Abdi S, Oswald S, Gostin PF, Helth A, Sort J, Baro MD, Calin M, Schultz L, Eckert J, Gebert A (2016) Designing new biocompatible glass-forming Ti75-xZr10NbxSi15 (x=0, 15) alloys: corrosion, passivity, and apatite formation. J Biomed Mater Res Part B Appl Biomater 104:27–38

    Article  CAS  Google Scholar 

  21. Ke JL, Huang CH, Chen YH, Tsai WY, Wei TY, Huang JC (2014) In vitro biocompatibility response of Ti-Zr-Si thin film metallic glasses. Appl Surf Sci 322:41–46

    Article  CAS  Google Scholar 

  22. Gabor C, Cristea D, Velicu IL, Bedo T, Gatto A, Bassoli E, Varga B, Pop MA, Geanta V, Stefanoiu R, Codescu MM, Manta E, Patroi D, Florescu M, Munteanu SI, Ghiuta I, Lupu N, Munteanu D (2019) Ti-Zr-Si-Nb nanocrystalline alloys and metallic glasses: assessment on the structure. Thermal Stab Corros Mech Prop Mater 12:1551

    CAS  Google Scholar 

  23. Duan G, Wiest A, Lind ML, Kahl A, Johnson WL (2008) Lightweight Ti-based bulk metallic glasses excluding late transition metals. Scr Mater 58:465–468

    Article  CAS  Google Scholar 

  24. Tang MQ, Zhang HF, Zhu ZW, Fu HM, Wang AM, Li H, Hu ZQ (2010) TiZr-base bulk metallic glass with over 50 mm in diameter. J Mater Sci Technol 26:481–486

    Article  CAS  Google Scholar 

  25. Huang YJ, Shen J, Sun JF, Yu XB (2007) A new Ti–Zr–Hf–Cu–Ni–Si–Sn bulk amorphous alloy with high glass-forming ability. J Alloy Compd 427:171–175

    Article  CAS  Google Scholar 

  26. Zhu SL, Wang XM, Inoue A (2008) Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm. Intermetallics 16:1031–1035

    Article  CAS  Google Scholar 

  27. Calin M, Gebert A, Ghinea AC, Gostin PF, Abdi S, Mickel C, Eckert J (2013) Designing biocompatible Ti-based metallic glasses for implant applications. Mater Sci Eng C Mater Biol Appl 33:875–883

    Article  CAS  Google Scholar 

  28. Lin HC, Tsai PH, Ke JH, Li JB, Jang JSC, Huang CH, Haung JC (2014) Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application. Intermetallics 55:22–27

    Article  CAS  Google Scholar 

  29. Johnson WL (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56

    Article  CAS  Google Scholar 

  30. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306

    Article  CAS  Google Scholar 

  31. Ye F, Lu K (2000) Crystallization kinetics of Al-La-Ni amorphous alloy. J Non-Cryst Solids 262:228–235

    Article  CAS  Google Scholar 

  32. Liu L, Wu ZF, Zhang J (2002) Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy. J Alloy Compd 339:90–95

    Article  CAS  Google Scholar 

  33. Chen Z, Zhu Q, Li Z, Guo Q, Zhang K, Jiang Y (2021) Effects of Si/B ratio on the isothermal crystallization behavior of FeNiSiBCuNb amorphous alloys. Thermochimi Acta 697:178854

    Article  CAS  Google Scholar 

  34. Rezaei-Shahreza P, Seifoddini A, Hasani S (2017) Thermal stability and crystallization process in a Fe-based bulk amorphous alloy: The kinetic analysis. J Non-Cryst Solids 471:286–294

    Article  CAS  Google Scholar 

  35. Chen Z, Zhu QK, Zhang KW, Jiang Y (2020) the non-isothermal and isothermal crystallization behavior and mechanism of Fe-Ni alloys. Cryst Growth Des 20:2187–2193

    Article  CAS  Google Scholar 

  36. Guo L, Zhu QK, Chen Z, Zhang KW, Jiang Y (2022) The non-isothermal crystallization kinetics and mechanism of FeGaGeBCu alloy. J Non-Cryst Solids 577:121310

    Article  CAS  Google Scholar 

  37. Weinberg MC, Birnie DP, Shneidman VA (1997) Crystallization kinetics and the JMAK equation. J Non-Cryst Solids 219:89–99

    Article  CAS  Google Scholar 

  38. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  39. Nakamura K, Watanabe T, Katayama K, Amano T (1972) Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci 16:1077–1091

    Article  CAS  Google Scholar 

  40. Nakamura K, Katayama K, Amano T (1973) Some aspects of nonisothermal crystallization of polymers II consideration of the isokinetic condition. J Appl Polym Sci 17:1031–1041

    Article  CAS  Google Scholar 

  41. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by dsc. Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  42. Henderson DW (1979) Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids 30:301–315

    Article  CAS  Google Scholar 

  43. Yinnon H, Uhlmann DR (1983) Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids 54:253–275

    Article  CAS  Google Scholar 

  44. Blázquez JS, Conde CF, Conde A (2005) Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater 53:2305–2311

    Article  CAS  Google Scholar 

  45. Farjas J, Roura P (2006) Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater 54:5573–5579

    Article  CAS  Google Scholar 

  46. Mo ZS (2008) A method for the non-isothermal crystallization kinetics of polymers. Acta Polym Sin 2008:656–661

    Article  Google Scholar 

  47. Martin D (2010) Application of Kolmogorov–Johnson–Mehl–Avrami equations to non-isothermal conditions. Comput Mater Sci 47:796–800

    Article  CAS  Google Scholar 

  48. Kangas J, Bischof JC, Hogan CJ (2021) Kinetics of nonisothermal phase change with arbitrary temperature-time history and initial transformed phase distributions. J Chem Phys 155:211101

    Article  CAS  Google Scholar 

  49. Greer AL (1993) Confusion by design. Nature 366:303–304

    Article  Google Scholar 

  50. Bian D, Zhou W, Deng J, Liu Y, Li W, Chu X, Xiu P, Cai H, Kou Y, Jiang B, Zheng Y (2017) Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomater 64:421–436

    Article  CAS  Google Scholar 

  51. Gong P, Yao KF, Ding HY (2015) Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass. Mater Lett 156:146–149

    Article  CAS  Google Scholar 

  52. Khalifa HE, Vecchio KS (2011) Thermal stability and crystallization phenomena of low cost Ti-based bulk metallic glass. J Non-Cryst Solids 357:3393–3398

    Article  CAS  Google Scholar 

  53. Lee KS, Kim S, Lim KR, Hong SH, Kim KB, Na YS (2016) Crystallization, high temperature deformation behavior and solid-to-solid formability of a Ti-based bulk metallic glass within supercooled liquid region. J Alloy Compd 663:270–278

    Article  CAS  Google Scholar 

  54. Calka A, Radliński AP (1988) Decoupled bulk and surface crystallization in Pd85Si15 glassy metallic alloys: description of isothermal crystallization by a local value of the avrami exponent. J Mater Res 3:59–66

    Article  CAS  Google Scholar 

  55. Wang XD, Wang Q, Jiang JZ (2007) Avrami exponent and isothermal crystallization of Zr/Ti-based bulk metallic glasses. J Alloy Compd 440:189–192

    Article  CAS  Google Scholar 

  56. Yang YJ, Xing DW, Shen J, Sun JF, Wei SD, He HJ, McCartney DG (2006) Crystallization kinetics of a bulk amorphous Cu–Ti–Zr–Ni alloy investigated by differential scanning calorimetry. J Alloy Compd 415:106–110

    Article  CAS  Google Scholar 

  57. Qiao JC, Pelletier JM (2012) Isochronal and isothermal crystallization in Zr55Cu30Ni5 Al10 bulk metallic glass. Trans Nonferr Metals Soc China 22:577–584

    Article  Google Scholar 

  58. Kissinger HE (1956) Variation ofpeak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    Article  CAS  Google Scholar 

  59. Li Y-H, Zhang W, Dong C, Qiang J-B, Makino A (2013) Correlation between the glass-forming ability and activation energy of crystallization for Zr75-x Ni25Al (x) metallic glasses. Int J Miner Metall Mater 20:445–449

    Article  CAS  Google Scholar 

  60. Málek J (1995) The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta 267:61–73

    Article  Google Scholar 

  61. Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen MW (2021) Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nat Commun 12:3843

    Article  CAS  Google Scholar 

  62. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829

    Article  CAS  Google Scholar 

  63. Senkov ON, Miracle DB (2001) Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull 36:2183–2198

    Article  CAS  Google Scholar 

  64. Ranganathan S, Von Heimendahl M (1981) The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci 16:2401–2404. https://doi.org/10.1007/BF01113575

    Article  CAS  Google Scholar 

  65. Louzguine DV, Inoue A (2000) Crystallization behavior of Ti50Ni25Cu25 amorphous alloy. J Mater Sci 35:4159–4164. https://doi.org/10.1023/A:1004815112497

    Article  CAS  Google Scholar 

  66. Nicoara M, Raduta A, Locovei C, Buzdugan D, Stoica M (2017) About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys. J Therm Anal Calorim 127:107–113

    Article  CAS  Google Scholar 

  67. Lin S, Liu D, Zhu Z, Li D, Fu H, Zhuang Y, Zhang H, Li H, Wang A, Zhang H (2018) New Ti-based bulk metallic glasses with exceptional glass forming ability. J Non-Cryst Solids 502:71–75

    Article  CAS  Google Scholar 

  68. Gong P, Wang X, Yao K (2016) Effects of alloying elements on crystallization kinetics of Ti–Zr–Be bulk metallic glass. J Mater Sci 51:5321–5329. https://doi.org/10.1007/s10853-016-9835-5

    Article  CAS  Google Scholar 

  69. Wang J, Kou HC, Li JS, Gu XF, Xing LQ, Zhou L (2009) Determination of kinetic parameters during isochronal crystallization of Ti40Zr25Ni8Cu9Be18 metallic glass. J Alloy Compd 479:835–839

    Article  CAS  Google Scholar 

  70. Pratap A, Rao TLS, Lad KN, Dhurandhar HD (2007) Kinetics of crystallization of titanium based binary and ternary amorphous alloys. J Non-Cryst Solids 353:2346–2349

    Article  CAS  Google Scholar 

  71. He G, Löser W, Eckert J (2004) Devitrification and phase transformation of (Ti0.5Cu0.25Ni0.15Sn0.05Zr0.05)100−xMox metallic glasses. Scr Mater 50:7–11

    Article  CAS  Google Scholar 

  72. Xia MX, Ma CL, Zheng HX, Li JG (2005) Preparation and crystallization of Ti53Cu27Ni12Zr3Al7Si3B1 bulk metallic glass with wide supercooled liquid region. Mater Sci Eng A 390:372–375

    Article  CAS  Google Scholar 

  73. Zhu SL, Wang XM, Qin FX, Yoshimura M, Inoue A (2007) New TiZrCuPd quaternary bulk glassy alloys with potential of biomedical applications. Mater Trans 48:2445–2448

    Article  CAS  Google Scholar 

  74. Zhu SL, Xie GQ, Qin FX, Wang XM, Inoue A (2012) Effect of minor Sn additions on the formation and properties of TiCuZrPd bulk glassy alloy. Mater Trans 53:500–503

    Article  CAS  Google Scholar 

  75. Nicoara M, Buzdugan D, Locovei C, Bena T, Stoica M (2018) About thermostability of biocompatible Ti–Zr–Ag–Pd–Sn amorphous alloys. J Therm Anal Calorim 133:189–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature and Science Foundation of China under Grant No. 51701082 and 52071276, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang or Shengfeng Guo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Peng, L., Zhang, M. et al. Effects of microalloying on the isothermal and non-isothermal crystallization behaviors of TiZrSi-based metallic glasses. J Mater Sci 57, 7980–7996 (2022). https://doi.org/10.1007/s10853-022-07177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07177-w

Navigation