Skip to main content
Log in

DEPP functionally graded piezoceramics via micro-fabrication by co-extrusion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper introduces the Dual Electro/Piezo Property (DEPP) gradient technique via Micro-Fabrication through Co-eXtrusion (MFCX) which pairs a high displacement lead zirconate titanate (PZT) piezoceramic with a high permittivity barium titanate (BT) dielectric. By grading with this material combination spatially across an actuator, the electric field is concentrated in the more active region for improved efficiency, higher displacements, and complex motions. To aid in synthesis and analysis of any gradient profile, compositional maps are provided for key material properties (density, stiffness, permittivity, and piezoelectric coefficients). The DEPP technique was validated, independent of the MFCX process, by powder pressing a conventional bimodal gradient beam which demonstrated through experiments high displacement capabilities at lower driving potentials than comparable functionally graded piezoceramic actuators. For more complex gradients, the MFCX process was adapted to the DEPP gradient technique and illustrated by the fabrication of a linearly graded prototype whose monolithic nature and gradual material variation significantly reduces internal stresses, improves reliability, and extends service lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Choules BD, Kokini K (1996) J Eng Mater Technol 118:522

    Article  CAS  Google Scholar 

  2. Grujicic M, Zhao H (1998) Mater Sci Eng A A252:117

    Article  CAS  Google Scholar 

  3. Hofinger I, Bahr HA, Balke H, Kirchhoff G, Haeusler C, Weiss HJ (1999) Mater Sci Forum: Funct Grad Mater 308–311:450

    Article  Google Scholar 

  4. Kawasaki A, Watanabe R (1999) Mater Sci Forum: Funct Grad Mater 308–311:402

    Article  Google Scholar 

  5. Jessen TL, Lewis D III (1990) J Am Ceram Soc 75:1405

    Article  Google Scholar 

  6. Cokeram BV, Wilson WL (2001) Surf Coat Technol 139:161

    Article  Google Scholar 

  7. Tsuda K, Ikegaya A, Miyagawa T, Suehiro Y (2000) J Jpn Soc Powder Powder Metall 47:564

    Article  CAS  Google Scholar 

  8. Heartling GH (1994) Am Ceram Soc Bull 73:93

    Google Scholar 

  9. Wu CCM, Kahn M, Moy W (1996) J Am Ceram Soc 79:809

    Article  CAS  Google Scholar 

  10. Uchino K (1996) In: Proceedings of IEEE international symposium on applications of ferroelectrics, East Brunswick, August 1996, vol 2, p 736

  11. Uchino K (1990) In: Proceedings of IEEE international symposium on applications of ferroelectrics, Champaign, June 1990, p 153

  12. Furman E, Li G, Heartling GH (1995) In: IEEE international symposium on applications of ferroelectrics, p 146

  13. Elissalde C, Cross LE (1995) J Am Ceram Soc 78:2233

    Article  CAS  Google Scholar 

  14. Wang QM, Cross LE (1999) Mater Chem Phys 58:20

    Article  CAS  Google Scholar 

  15. Hudnut S, Almajid A, Taya M (2000) In: Proceedings of SPIE smart structures and materials: behavior and mechanics, Newport beach, March 2000, vol 3992, p 376

  16. Hirsekorn S, Gebhardt W, Arnold W (1999) Mater Sci Forum: Funct Grad Mater 308–311:521

    Article  Google Scholar 

  17. Takagi K, Li JF, Yokoyama S, Watanabe R, Almajid A, Taya M (2002) Sci Technol Adv Ceram 3:217

    CAS  Google Scholar 

  18. Takagi K, Li JF, Yokoyama S, Watanabe R (2003) J Euro Ceram Soc 23:1577

    Article  CAS  Google Scholar 

  19. Zhu X, Wang Q, Meng Z (1995) J Mater Sci Lett 14:516

    Article  CAS  Google Scholar 

  20. Zhu X, Meng Z (1995) Sens Actuators A Phys 48:169

    Article  CAS  Google Scholar 

  21. Zhu X, Zhu J, Zhou S, Li Q, Liu Z (1999) Sens Actuators A Phys 74:198

    Article  CAS  Google Scholar 

  22. Xu J, Zhu X, Meng Z (1999) IEEE Trans Comp Pack Technol 22:11

    Article  CAS  Google Scholar 

  23. Zhu X, Zhu J, Zhou S, Li Q, Liu Z, Ming N, Meng Z (2000) J Mater Sci 35:1031

    Article  CAS  Google Scholar 

  24. Li X, Vartuli JS, Milius DJ, Aksay IA, Shih WY, Shih WH (2001) J Am Ceram Soc 84:996

    Article  CAS  Google Scholar 

  25. Li JF, Takagi K, Ono M, Pan W, Watanabe R (2003) J Am Ceram Soc 86:1094

    Article  CAS  Google Scholar 

  26. Chen YH, Ma J, Li T (2004) Ceram Int 30:683

    Article  CAS  Google Scholar 

  27. Qui J, Tani J, Ueno T, Morita T, Takahashi H, Du H (2003) Smart Mater Struct 12:115

    Article  Google Scholar 

  28. Jin D, Meng Z (2003) J Mater Sci Lett 22:971

    Article  CAS  Google Scholar 

  29. Nieto E, Fernandez JF, Moure C, Duran P (1996) J Mater Sci Mater Electron 7:55

    Article  CAS  Google Scholar 

  30. Shelley WF, Wan S, Bowman KJ (1999) Mater Sci Forum: Funct Grad Mater 308–311:515

    Article  Google Scholar 

  31. Crumm AT, Halloran JW (1998) J Am Ceram Soc 81:1053

    Article  CAS  Google Scholar 

  32. Crumm AT, Silva ECN, Kikuchi N, Brei D, Halloran JW (1998) In: Proceedings of SPIE smart structures and materials, San Diego, February 1998, 3324, p 20

  33. Brei D, Cannon BJ (2004) Compos Sci Technol 64:245

    Article  Google Scholar 

  34. Cannon BJ, Brei D (2000) J Intell Mater Sys Struct 11:659

    Article  CAS  Google Scholar 

  35. Apc International Ltd, Duck Run, PO Box 180, Mackeyville, PA 17750 USA, https://doi.org/www.americanpiezo.com

  36. Ferro Corporation, 1000 Lakeside Avenue, Cleveland, Ohio 44114–7000 USA, https://doi.org/www.ferro.com

  37. Alexander P, Brei D (2003) In: Proceedings of ASME international mechanical engineering congress and exposition, Washington DC, November 2003, 68, p 171

  38. Alexander PW, Brei D, Halloran JW (2005) In: Proceedings of AIAA/ASME/AHS adaptive structures conference, Austin, April 2005

  39. Alexander PW, Brei D, Halloran JW (2005) In: Proceedings of SPIE smart materials and structures conference, San Diego, March 2005

Download references

Acknowledgements

This research was made possible through a grant from the National Science Foundation (Grant #: CMS 0201031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diann Brei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, P.W., Brei, D. & Halloran, J.W. DEPP functionally graded piezoceramics via micro-fabrication by co-extrusion. J Mater Sci 42, 5805–5814 (2007). https://doi.org/10.1007/s10853-007-1793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1793-5

Keywords

Navigation