Skip to main content

Advertisement

Log in

Tubulin: from atomistic structure to supramolecular mechanical properties

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microtubules (MTs) are fundamental structural elements in the cytoskeleton of eukaryotic cells. Their unique mechanical properties depend on the properties of the tubulin dimer, its interactions with surrounding dimers and the geometric organization within the MT. While the geometry has already been well described in experimental works, the mechanical characteristics of the dimer as well as of the individual monomers have up to date not been described. These may therefore provide new, additional insight to the microtubule tensile properties. In this paper we construct a mesoscale model of MT with a bottom-up approach. First, we evaluate the elastic constants of each of the two monomers together with the interaction force between them by means of molecular dynamics (MD) simulations carried out in an explicit water environment. Using the MD results, we model a 1 μm long MT as a cylinder constituted by interacting elastic elements and examine its properties via finite element method (FEM). The obtained results show an elastic constant value for α-tubulin of 11 N/m, while for the β-tubulin the elastic constant was measured to be 15.6 N/m. Concerning interactions between neighbouring monomers, the elastic constants along the protofilament (45 N/m for the intra-dimer interface and 18 N/m for the inter-dimer interface) are more rigid than elastic constants calculated for lateral interfaces (11 and 15 N/m). The mesoscale model provides mechanical properties of the whole MT, thus allowing the comparison with data obtained by other previous experimental and theoretical studies. We report here a Young modulus of 1.66 GPa for the MT under axial tension. In perspective our approach provides a simple tool for the analysis of MT mechanical behaviour under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Howard J (2001) In: Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland, pp 119–134

  2. Nogales E, Wolf SG, Downing KH (1998) Nature 391:199

    Article  CAS  Google Scholar 

  3. Chrétien D, Wade RH (1991) Biol Cell 71:161

    Article  Google Scholar 

  4. Felgner H, Frank R, Schliwa M (1996) J Cell Sci 109:509

    CAS  Google Scholar 

  5. Kurachi M, Hoshi M, Tashiro H (1997) Cell Mot Cyt 38:201

    Article  Google Scholar 

  6. Venier P, Maggs AC, Pantaloni D (1994) J Biol Chem 269:13353

    CAS  Google Scholar 

  7. Kis A, Kasas S, Babi B, Kulik AJ, Benoît W, Briggs GAD, Schönenberger C, Catsicas S, Forró L (2002) Phys Rev Lett 89:248101

    Article  CAS  Google Scholar 

  8. Gittes F, Mickey B, Nettleton J, Howard J (1993) J Cell Biol 120:923

    Article  CAS  Google Scholar 

  9. Kasas S, Kis A, Riederer BM, Forró L, Dietler G, Catsicas S (2004) Chem Phys Chem 5:252

    CAS  Google Scholar 

  10. Jánosi IM, Chrétien D, Flyvbjerg H (2002) Biophys J 83:1317

    Article  Google Scholar 

  11. VanBuren V, Cassimeris L, Odde DJ (2005) Biophys J 89:2911

    Article  CAS  Google Scholar 

  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acid Res 28:235

    Article  CAS  Google Scholar 

  13. Löwe J, Li H, Downing KH, Nogales E (2001) J Mol Biol 313:1045

    Article  CAS  Google Scholar 

  14. Lindahl E, Hess B, van der Spoel D (2001) J Mol Mod 7:306

    CAS  Google Scholar 

  15. Berendsen HJC, Postma JPM, van Gunstersen WF, Hermans J (1981) In: Interaction model for water in relation to protein hydration. Reidel Publishing Company Dordrecht, Dordrecht, p 331

  16. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  17. Nogales E, Whittaker M, Miligan RA, Downing KH (1999) Cell 96:79

    Article  CAS  Google Scholar 

  18. Lenne PF, Raae AJ, Altmann SM, Saraste M, Hörber JKH (2000) FEBS Lett 476:124

    Article  CAS  Google Scholar 

  19. Altmann SM, Grünberg RG, Lenne PF, Ylänne J, Raae AJ, Herbert K, Saraste M, Nilges M, Hörber JKH (2002) Struct 10:1085

    Article  CAS  Google Scholar 

  20. Soncini M, Vesentini S, Ruffoni D, Orsi M, Deriu MA, Redaelli A (2006) Biomech Model Mechanobiol Nov 18;[Epub ahead of print]

  21. Erickson HP, Stoffler D (1996) J Cell Biol 135:5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the EST Marie Curie programme contract number MEST-CT-2004-504465 and by the Active Biomics STREP project contract number NMP4-CT-2004-516989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Deriu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deriu, M.A., Enemark, S., Soncini, M. et al. Tubulin: from atomistic structure to supramolecular mechanical properties. J Mater Sci 42, 8864–8872 (2007). https://doi.org/10.1007/s10853-007-1784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1784-6

Keywords

Navigation