Skip to main content
Log in

Thermodynamic Study of Assembling ↔ Disassembling of Microtubules via the Monte Carlo Simulation

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Microtubules are demonstrated as straight macromolecules including the linear chains of tubulin subunits in the length. It’s important to know the functions inside microtubule growth and the control of microtubule processes. An important item that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap in view point of thermodynamic properties. Monte Carlo simulation has been applied to study dynamic instability of the microtubule length. In this model, one-dimensional microtubule is fixed at one of the two and is simulated while the opposite end is allowed for growing in random situation. By a Monte Carlo model of the assembly and disassembly of microtubules, the thermodynamic parameters helped us to explain suitable mechanism and also we take into account the contribution of water to the entropy of the microtubule systems. We compared the result of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. By this study at each step, one tubulin has been added to the length for growing microtubule length. Computationally, this can be done through generating a uniform random number between 0 and 1. It has been calculated a correct dimension around 10–6 m of microtubules length including around 1650 tubulin dimers. Microtubule growth rate is related to the soluble tubulin dimer concentration and for all results shown here, simulation of any single condition was run 5–10 times. For each simulation it has been recorded values number, average length and free tubulin concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig.2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Ringhoff and L. Cassimeris, Mol. Biol Cell. 20, 3451 (2009). https://doi.org/10.1091/mbc.E09-02-0140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. J. Clément, I. Jourdain, S. Lachkar, et al., Biochemistry 44 (2005). https://doi.org/10.1021/bi0512492

  3. B. K. Garvalov, B. Zuber, C. B. Marquis, et al., J. Cell Biol. 174, 759 (2006).

    Article  CAS  Google Scholar 

  4. G. I. Brouhard and L. M. Rice, J. Cell Biol. 207, 323 (2014). https://doi.org/10.1083/jcb.201407095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Akhmanova and M. O. Steinmetz, Nat. Rev. Mol. Cell Biol. 16, 711 (2015). https://doi.org/10.1038/nrm4084

    Article  CAS  PubMed  Google Scholar 

  6. Y. Chen and W. O. Hancock, Nat. Commun. 6, 8160 (2015). https://doi.org/10.1038/ncomms9160

    Article  CAS  PubMed  Google Scholar 

  7. S. Sahu, S. Ghosh, B. Ghosh, et al., Biosens. Bioelectron. 47, 141 (2013).

    Article  CAS  Google Scholar 

  8. A. Guesdon, F. Bazile, R. M. Buey, et al., Nat. Cell Biol. 18, 1102 (2016). https://doi.org/10.1038/ncb3412

    Article  CAS  PubMed  Google Scholar 

  9. K. K. Gupta, E. O. Alberico, I. S. Näthke, and H. V. Goodson, Bio Essays 36, 818 (2014). https://doi.org/10.1002/bies.201400029

    Article  CAS  Google Scholar 

  10. P. K. Hepler, Plant Physiol. 170, 3 (2016). https://doi.org/10.1104/pp.15.0150626722019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. R. Burton, J. Cell. Biol. 99, 520 (1984).

    Article  CAS  Google Scholar 

  12. D. C. Rowlands, A. Williams, N. A. Jones, et al., Lab Invest. 72, 100 (1995).

    CAS  PubMed  Google Scholar 

  13. S. Ozon, A. Maucuer, and A. Sobel, Eur. J. Biochem. 248, 794 (1997).

    Article  CAS  Google Scholar 

  14. E. Charbaut, P. A. Curmi, S. Ozon, et al., J. Biol. Chem. 276, 16146 (2001).

    Article  CAS  Google Scholar 

  15. S. M. Hanash, J. R. Strahler, R. Kuick, et al., J. Biol. Chem. 263, 12813 (1988).

    Article  CAS  Google Scholar 

  16. P. A. Curmi, C. Nogues, S. Lachkar, et al., Br. J. Cancer 82, 142 (2000).

    Article  CAS  Google Scholar 

  17. D. K. Price, J. R. Ball, Z. Bahrani-Mostafavi, et al., Cell 84, 623 (1996).

    Article  Google Scholar 

  18. L. D. Belmont and T. J. Mitchison, Cell 84, 623–631 (1996). https://doi.org/10.1016/s0092-8674(00)81037-5.

  19. N. Hirokawa, Science (Washington, DC, U. S.) 279, 519 (1998).

    Article  CAS  Google Scholar 

  20. R. D. Vale, Cell 112, 467 (2003).

    Article  CAS  Google Scholar 

  21. R. H. Wade, D. Chrétien, and. D. Job, J. Mol. Biol. 212, 775 (1990).

    Article  CAS  Google Scholar 

  22. E. Nogales, S. Wolf, and K. H. Downing, Nature (London, U.K.) 391, 199 (1998).

    Article  CAS  Google Scholar 

  23. R. B. G. Ravelli, B. Gigant, P. A. Curmi, et al., Nature (London, U.K.) 428, 198 (2004).

    Article  CAS  Google Scholar 

  24. B. Mallik, A. Masunov, and T. Lazaridis, J. Comput. Chem. 23, 1090 (2002).

    Article  CAS  Google Scholar 

  25. Y. Duan, C. Wu, S. Chowdhury, et al., J. Comput. Chem. 24, 1999 (2003).

    Article  CAS  Google Scholar 

  26. B. R. Brooks, C. L. Brooks, A. D. MacKerell, Jr., et al., J. Comput. Chem. 30, 1545 (2009).

    Article  CAS  Google Scholar 

  27. B. T. Castle, S. McCubbin, L. S. Prahl, et al., Mol. Biol. Cell. 28, 1238 (2017).https://doi.org/10.1091/mbc.E16-08-0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Piehl, U. S. Tulu, P. Wadsworth, and L. Cassimeris, Proc. Natl. Acad. Sci. U. S. A. 101, 1584 (2004).

    Article  CAS  Google Scholar 

  29. S. S. Andersen, A. J. Ashford, R. Tournebize, et al., Nature (London, U.K.) 389, 640 (1997).

    Article  CAS  Google Scholar 

  30. N. M. Rusan, U. S. Tulu, C. Fagerstrom, and P. Wadsworth, J. Cell. Biol. 158, 997 (2002).https://doi.org/10.1083/jcb.200204109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. D. Belmont and T. J. Mitchison, Cell 84, 623 (1996).

    Article  CAS  Google Scholar 

  32. D. J. Odde and H. M. Buettner, Ann. Biol. Eng. 23, 268 (1995).

    Article  CAS  Google Scholar 

  33. S. Leibler and M. Dogterom, Phys. Rev. Lett. 70, 1347 (1993).

    Article  Google Scholar 

  34. F. Mollaamin, F. Kandemirli, and M. Monajjemi, Biointerface Res. Appl. Chem. 12, 3780 (2022). https://doi.org/10.33263/BRIAC123.37803789

    Article  CAS  Google Scholar 

  35. M. A. Moulaee, M. Monajjemi, J. Mehrzad, et al., Biointerface Res. Appl. Chem. 12, 1428 (2022). https://doi.org/10.33263/BRIAC122.14281436

    Article  CAS  Google Scholar 

  36. M. Monajjemi, F. Kandemirli, H. Sakhaeinia, and F. Mollaamin, Biointerface Res. Appl. Chem. 12, 2646 (2022). https://doi.org/10.33263/BRIAC122.26462659

    Article  CAS  Google Scholar 

  37. M. A. Moulaee, M. Monajjemi, J. Mehrzad, et al., Biointerface Res. Appl. Chem. 11, 9501 (2021). https://doi.org/10.33263/BRIAC112.95019512

    Article  Google Scholar 

  38. P. Niethmmer, P. Bastiaens, and E. Karsenti, Science (Washington, DC, U. S.) 303, 1862 (2004).

    Article  Google Scholar 

  39. P. N. Zakharov, V. Gudimchuk, A. Voevodin, et al., Biophys. J. 109, 2574 (2015). https://doi.org/10.1016/j.bpj.2015.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Monajjemi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghsh, F., Monajjemi, M. Thermodynamic Study of Assembling ↔ Disassembling of Microtubules via the Monte Carlo Simulation. Russ. J. Phys. Chem. 96, 1474–1483 (2022). https://doi.org/10.1134/S0036024422070111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422070111

Keywords:

Navigation