Skip to main content
Log in

Solidification contact angles of molten droplets deposited on solid surfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Droplet impact and equilibrium contact angle have been extensively studied. However, solidification contact angle, which is the final contact angle formed by molten droplets impacting on cold surfaces, has never been a study focus. The formation of this type of contact angle was investigated by experimentally studying the deposition of micro-size droplets (∼39 μm in diameter) of molten wax ink on cold solid surfaces. Scanning Electron Microscope (SEM) was used to visualize dots formed by droplets impacted under various impact conditions, and parameters varied included droplet initial temperature, substrate temperature, flight distance of droplet, and type of substrate surface. It was found that the solidification contact angle was not single-valued for given droplet and substrate materials and substrate temperature, but was strongly dependent on the impact history of droplet. The angle decreased with increasing substrate and droplet temperatures. Smaller angles were formed on the surface with high wettability, and this wetting effect increased with increasing substrate temperature. Applying oil lubricant to solid surfaces could change solidification contact angle by affecting the local fluid dynamics near the contact line of spreading droplets. Assuming final shape as hemispheres did not give correct data of contact angles, since the final shape of deposited droplets significantly differs from a hemispherical shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C p :

Specific heat of droplet

D :

Diameter of spherical droplet

G :

Shear modulus of substrate

h :

Height of sessile droplet

H :

Elastic displacement of viton surface

k 0 :

Thermal conductivity of substrate

k c :

Thermal conductivity of substrate coating

k d :

Thermal conductivity of droplet

l :

Thickness of substrate coating

L :

Flight distance of droplet

L f :

Latent heat of fusion of droplet

R c :

Thermal resistance of substrate coating

R d :

Thermal resistance of droplet

t :

Time

t solid :

Solidification time scale of droplet

t spr :

Spreading time scale of droplet

T d :

Droplet temperature upon impact

T j :

Jetting temperature

T m :

Droplet melting temperature

T s :

Substrate temperature

U :

Velocity of droplet upon impact

X :

Thickness of solidified layer

α0 :

Thermal diffusivity of substrate

αd :

Thermal diffusivity of droplet

θc :

Calculated contact angle of sessile droplet

θe :

Equilibrium contact angle

θl :

Contact angle measured on the left of photographs

θr :

Contact angle measured on the right of photographs

θs :

Solidification contact angle

λ:

Parameter defined in Eq. 7

μ:

Viscosity of droplet

ρ:

Density of droplet

σ:

Surface tension of droplet

Ca:

μ U/σ (Capillary number)

Pr:

μ C p /k d (Prandtl number)

Re:

ρ UD/μ (Reynolds number)

Ste:

C p (T mT s)/L f (Stefan number)

We:

ρ U 2 D/σ (Weber number)

β:

(T dT m)/(T mT s) (Superheat parameter)

References

  1. Pasandideh-Fard M, Pershin V, Chandra S, Mostaghimi J (2002) J Therm Spray Technol 11(2):206

    Article  Google Scholar 

  2. Mostaghimi J, Pasandideh-Fard M, Chandra S (2002) Plasma Chem Plasma Process 22(1):59

    Article  CAS  Google Scholar 

  3. Attinger D, Zhao Z, Poulikakos D (2000) ASME J Heat Transfer 122:544

    Article  CAS  Google Scholar 

  4. Hayes DJ, Wallace DB (1998) Chip Scale Rev 2(4):75

    Google Scholar 

  5. Waldvogel JM, Diversiev G, Poulikakos D, Megaridis CM, Attinger D, Xiong B, Wallace DB (1998) ASME J Heat Transfer 120:539

    Google Scholar 

  6. Gao F, Sonin AA (1994) Proc R Soc Lond A 44:533

    Google Scholar 

  7. Snyder T, Korol S (1999) In: IS&T’s Recent progress in Ink Jet Technologies II. In Hanson E (ed) Springfield, VA, pp 175–181

  8. Chandra S, Avedisian CT (1991) Proc R Soc Lond A 432:13

    Article  Google Scholar 

  9. Bennett T, Poulikakos D (1993) J Mater Sci 28:963; Doi: 10.1007/BF00400880

  10. Zhao Z, Poulikakos D, Fukai J (1996) Int J Heat Mass Transfer 39(13):2791

    Article  CAS  Google Scholar 

  11. Waldvogel JM, Poulikakos D (1997) Int J Heat Mass Transfer 40(2):295

    Article  Google Scholar 

  12. Aziz SD, Chandra S (2000) J Heat Mass Transfer 43:2841

    Article  Google Scholar 

  13. Haferl S, Poulikakos D (2002) J Appl Phys 92(3):1675

    Article  CAS  Google Scholar 

  14. Fukai J, Shiiba Y, Yamamoto T, Miyatake O (1995) Phys Fluids 7(2):236

    Article  CAS  Google Scholar 

  15. Sikalo S, Tropea C, Ganic EN (2002) Exp Therm Fluid Sci 29:795

    Article  Google Scholar 

  16. Sikalo S, Wilhelm H–D, Roisman IV, Jakirlic S, Tropea C (2005) Phys Fluids 17:062103

    Article  CAS  Google Scholar 

  17. Schiaffino S, Sonin AA (1997) Phys Fluids 9(8):2217

    Article  CAS  Google Scholar 

  18. Hoffman RL (1975) J Colloid Interface Sci 50:228

    Article  CAS  Google Scholar 

  19. Schiaffino S, Sonin AA (1997) Phys Fluids 9(11):3172

    Article  CAS  Google Scholar 

  20. Bhola R, Chandra S (1999) J Mater Sci 34:4883

    Article  CAS  Google Scholar 

  21. Kim H-Y, Chun J-H (2001) Phys Fluids 13(3):643

    Article  CAS  Google Scholar 

  22. Carslaw HS, Jaeger JC (1959) In: Conduction of heat in solids. 2nd edn, Clarendon Press, Oxford, pp 288–289

  23. Gong S-C (2005) Jpn J Appl Phys 44(5A):3323

    Article  CAS  Google Scholar 

  24. Amada A, Haruyama M, Ohyagi T, Tomoyasu K (2001) Surf Coat Tech 138:211

    Article  CAS  Google Scholar 

  25. Haferl S, Poulikakos D (2003) Int J Heat Mass Transfer 46:535

    Article  CAS  Google Scholar 

  26. Carre A, Gastel J-C, Shanahan MER (1996) Nature 379:432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly thank Dr. Stephan Drappel from Xerox Research Centre of Canada for his help and discussion. The authors are indebted to Chris Wagner and Bradley Gerner from Xerox Corporation for their assistance in setting up the jetting fixture and to David Gervasi from Xerox Corporation for the viton coating. This work is supported by Xerox Foundation and Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Ashgriz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Ashgriz, N., Chandra, S. et al. Solidification contact angles of molten droplets deposited on solid surfaces. J Mater Sci 42, 9511–9523 (2007). https://doi.org/10.1007/s10853-007-1757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1757-9

Keywords

Navigation