Skip to main content
Log in

Low temperature processing of Mn–Zn nanoferrites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mn0.4Zn0.6Fe2O4 ferrite synthesized by coprecipitation method is investigated in the present work. D.C. resistivity is studied as a function of temperature and values upto 102 times greater than those for samples prepared by the conventional ceramic method are observed. It is found that resistivity decreases with increase in temperature. The initial permeability values are high as compared to those prepared by soft chemical route. Initial permeability is found to increase with increase in temperature. At a certain temperature, called the Curie temperature, it attained a maximum value, after which the initial permeability is found to decrease. Even at nanolevel, appreciable value of initial permeability is obtained. The particle size is calculated using Scherrer equation for Lorentzian peak, which comes out between 9 nm and 19 nm. Possible mechanisms contributing to these processes have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh M, Sud SP (2000) Mod Phys Lett 14:531

    Article  CAS  Google Scholar 

  2. Singh M, Chauhan BS (2000) Int Mod Phys B 14:1593

    CAS  Google Scholar 

  3. Rosales MI, Amano E, Cuautle MP, Valenzuela R (1997) Mater Sci Eng B 49:221

    Article  Google Scholar 

  4. Thakur A, Singh M (2003) Ceramic Int 29:505

    Article  CAS  Google Scholar 

  5. Thakur A, Mathur P, Singh M (2007) J Phys Chem Solids 68:378

    Article  CAS  Google Scholar 

  6. Verma A, Goel TC, Mendiratta RG, Alam MI (1999) Mater Sci Eng B 60:156

    Article  Google Scholar 

  7. Verma A, Goel TC, Mendiratta RG (2000) Mater Sci Technol 16:712

    Article  CAS  Google Scholar 

  8. Cullity BD (1978) Elements of X-ray diffraction. Addison Wesley Reading, MA

    Google Scholar 

  9. Caizer C, Stefanescu M (2003) Physica B 327:129

    Article  CAS  Google Scholar 

  10. Singh M (1996) Ph.D. thesis, Himachal Pradesh University, Shimla, India

  11. Rado GT, Wright RW, Emerson WH (1960) Phys Rev 80:273

    Article  Google Scholar 

  12. Rado GT, Wright RW, Emerson WH, Terris A (1952) Phys Rev 88:909

    Article  CAS  Google Scholar 

  13. Rado GT (1953) Rev Mod Phys 25:81

    Article  CAS  Google Scholar 

  14. Snoek JL (1947) New developments in ferromagnetic materials. Elsevier Publishing, New York

    Google Scholar 

  15. Gieraltowski J, Globus A (1977) IEEE Trans Magn 13:1359

    Article  Google Scholar 

  16. Globus A (1977) Proc J Phys Colloq 38:C1

    Google Scholar 

  17. Soohoo RF (1960) Theory and application of ferrites. Prentice-Hall, USA

    Google Scholar 

  18. Yue Z, Zhou J, Wang X, Gui Z, Li L (2001) J Mater Sci Lett 20:1327

    Article  CAS  Google Scholar 

  19. Iwauchie K (1971) Jap J Appl Phys 10:1520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mathur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, P., Thakur, A. & Singh, M. Low temperature processing of Mn–Zn nanoferrites. J Mater Sci 42, 8189–8192 (2007). https://doi.org/10.1007/s10853-007-1690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1690-y

Keywords

Navigation