Skip to main content
Log in

Microstructural evolution of gold–aluminum wire-bonds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of this study is to understand the morphological changes that occur during annealing of Al–Au wire-bonds, by analyzing the interface region of annealed model wire-bonded samples between 5N (99.999%) Au wires and Al pads. Due to the small length scale of the intermetallic region at the interface of the bond, the analysis was done using scanning/transmission electron microscopy combined with energy dispersive spectroscopy. Samples were prepared using a dual-beam focused ion beam system. Microstructural characterization showed that during annealing, a Au-rich intermetallic region was formed under the bond and at the periphery of the bond. Two types of failures occurred during annealing: crack formation at the bond periphery due to an increase in volume during intermetallic growth and the formation of stresses; and oxidation of the AlAu4 phase adjacent to the Au ball, which resulted in the formation of continuous cracks between the Au ball and the intermetallic region. The characteristic void-line found inside the intermetallic region played no part in failure that occurred during exposure to elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Harman G (1997) Wire-bonding in microelectronics materials process reliability and yield. McGraw-Hill Publishers, NY

  2. Zhang X, Yan TT (2006) Thin Solid Films 504[1–2]:355

  3. Noolu NJ, Murdeshwar NM, Ely KJ, Lippold JC, Baeslack WA (2004) J Mater Res 19(5):1374

    Article  CAS  Google Scholar 

  4. Breach CD, Tok CW, Wulff F, Calpito D (2004) J Mater Sci 39(19):6125

    Article  CAS  Google Scholar 

  5. Maiocco L, Smyers D, Kadiyala S, Baker I (1990) Mater Charact 24(4):293

    Article  CAS  Google Scholar 

  6. Clatterbaugh GV, Weiner JA, Charles HK (1984) IEEE Trans Compon Hybrids Manufacture Technol 7(4):349

    Article  Google Scholar 

  7. Majni G, Nobili C, Ottaviani G, Costato M, Galli E (1981) J Appl Phys 52(6):4047

    Article  CAS  Google Scholar 

  8. Markwitz A, Matz W (1970) Surf Interface Anal 26(9):650

    Article  Google Scholar 

  9. Philofsky E (1970) Solid-State Electron 13(10):1391

    Article  CAS  Google Scholar 

  10. Xu C, Sritharan T, Mhaisalkar SG (2007) Scripta Mater 56(6):549

    Article  CAS  Google Scholar 

  11. Chang HS, Hsieh KC, Martens T, Yang A (2004) IEEE Trans Compon Pack Technol 27(1):155

    Article  CAS  Google Scholar 

  12. Ji H, Li M, Wang C, Bang HS, Bang HS (2007) Mater Sci Eng A 447(1–2):111

    Article  Google Scholar 

  13. Williams DB, Carter BC (1996) Transmission electron microscopy. Plenum, New York

    Book  Google Scholar 

  14. Karpel A, Kaplan WD, Atzmon Z, Gur G (2005) In: Havas D, Levine L (eds) Proceedings of the 2005 international symposium on microelectronics, IMAPS. p 325

  15. Reyntjens S, Puers R (2001) J Micromech Microeng 11(4):287

    Article  CAS  Google Scholar 

  16. Karpel A, Gur G, Atzmon Z, Kaplan WD (2007) J Mater Sci, in press. doi 10.1007/s10853-007-1592-z

  17. Bowden P, Brandon DG (1963) J Nuclear Mater 9(3):348

    Article  CAS  Google Scholar 

  18. Piao H, McIntyre NS (2001) Surf Interface Anal 31(9):874

    Article  CAS  Google Scholar 

  19. Xu C, Breach CD, Sritharan T, Wulff F, Mhaisalkar SG (2004) Thin Solid Films 462–463:357

    Article  Google Scholar 

  20. Villars P (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd ed. vol 1. ASM International, Materials Park, Ohio, p 652

Download references

Acknowledgements

The authors thank the Russell Berrie Nanotechnology Institute at the Technion for use of the FIB, and I. Popov for assistance with use of the TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne D. Kaplan.

Appendix

Appendix

 

Structure Type

Pearson Symbol

Space Group

Lattice parameters (nm)

Al3Au8 [20]

Al3Au8

hR44

\( R\overline 3 c \)

a = 0.7724 c = 4.2083

AlAu4 [19]

AlAu4

cP20

P213

a = 0.6902

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpel, A., Gur, G., Atzmon, Z. et al. Microstructural evolution of gold–aluminum wire-bonds. J Mater Sci 42, 2347–2357 (2007). https://doi.org/10.1007/s10853-007-1593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1593-y

Keywords

Navigation