Skip to main content
Log in

Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Barium strontium gadolinium bismuth niobate (Ba0.1Sr0.81Gd0.06Bi2Nb2O9, BSGBN) ceramics were prepared by using the conventional solid-state reaction method. The dielectric permittivity, modulus and impedance spectroscopy studies on BSGBN were investigated in the frequency range, 45 Hz–5 MHz and in the temperature range from room temperature (RT) to 570 °C. The dielectric anomaly with a broad peak was observed at 470 °C. Simultaneous substitution of Ba2+ and Gd3+ increases the transition temperature of SrBi2Nb2O9 (SBN) from 392 to 470 °C. XRD studies in BSGBN revealed an orthorhombic structure with lattice parameters a = 5.4959 Å, b/a = 1.000, c = 25.0954 Å. Impedance and modulus plots were used as tools to analyse the sample behaviour as a function of frequency. Cole-Cole plots showed a non-Debye relaxation. Also, dc and ac conductivity measurements were performed on BSGBN. The electric impedance which describes the dielectric relaxation behaviour is fitted to the Kohlrausch exponential function. Near the phase transition temperature, a stretched exponential parameter β indicating the degree of distribution of the relaxation time has a small value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aurivillius B (1949) Ark Kemi 1:463

    CAS  Google Scholar 

  2. Aurivillius B (1950) Ark Kemi 1:499

    Google Scholar 

  3. Aurivillius B (1950) Ark Kemi 2:519

    CAS  Google Scholar 

  4. Furusawa Y, Doi H (1999) Jpn J Appl Phys 38:6864

    Article  CAS  Google Scholar 

  5. Cho CR (1999) Mater Sci Eng B Solid 64:113

    Article  Google Scholar 

  6. Yoon SM, Tokimitsu E, Ishiwara H (1998) Jpn J Appl Phys 37:L396

    Google Scholar 

  7. Kim TY, Kim D, Chung CW (1997) Jpn J Appl Phys 36:6494

    Article  CAS  Google Scholar 

  8. Wang F, Leppavouri S (1997) J Appl Phys 82:1293

    Article  CAS  Google Scholar 

  9. Chen YC, Sun L, Yu T et al (1995) Thin Solid Films 269:18

    Article  CAS  Google Scholar 

  10. De Araujo CAP, Cuchiaro JD, Mcmillan LD, Scott MC, Scott JF (1995) Nature 374:627

    Article  Google Scholar 

  11. Majumder SB, Dobal PS, Bhaskar S, Katiyar RS (1999–2000) Ferroelectrics 241:287

  12. Cheol-Hoon Y, Jae-Sun K, Soon-Gil Y (1998) Integ Ferro 21:475

    Article  Google Scholar 

  13. Cheol-Hoon Y, Sang-Shik P, Soon-Gil Y (1997) Integ Ferro 18:377

    Article  Google Scholar 

  14. Scott JF, De Araujo CAP (1989) Science 246:1400

    Article  CAS  Google Scholar 

  15. Jimenez B et al (2000) J Phys Condens Matter 12:3883

    Article  CAS  Google Scholar 

  16. Subba Rao EC (1962) J Am Ceram Soc 45:166

    Article  Google Scholar 

  17. Zanetti SM et al (2000) J Mater Res 15:2091

    CAS  Google Scholar 

  18. Shibata K, Shoji K, Sakata K (2001) Jpn J Appl Phys 40:5719

    Article  CAS  Google Scholar 

  19. Nanno M, Hirose M, Tsukada T (2001) Jpn J Appl Phys 40:5727

    Article  Google Scholar 

  20. Subba Rao EC (1962) J Phys Chem Solids 23:665

    Article  CAS  Google Scholar 

  21. Subba Rao EC (1961) J Chem Phys 34:695

    Article  CAS  Google Scholar 

  22. Subba Rao EC (1961) Phys Rev 122:804

    Article  CAS  Google Scholar 

  23. Newnham RE, Wolf RW, Horsey RS, Diaz-Colon FA, Kay MI (1973) Mater Res Bull 8:1183

    Article  CAS  Google Scholar 

  24. Duran-Martin P, Castro A, Milan P, Jimenez B (1998) J Mater Res 13:2565

    CAS  Google Scholar 

  25. Millan P, Remirez A, Castro A (1995) J Mater Sci Lett 14:1657

    Article  CAS  Google Scholar 

  26. Millam P, Castro A, Torrance TB (1993) Mater Res Bull 28:117

    Article  Google Scholar 

  27. Atsuki T, Soyama N, Yonezawa T, Ogi K (1995) Jpn J Appl Phys 34:5096

    Article  CAS  Google Scholar 

  28. Lu C, Wen C (1999) Mater Res Soc Symp Proc 541:229

    CAS  Google Scholar 

  29. Forbess MJ, Seraji S, Wu Y, Nguyen CP, Cao GZ (2000) Appl Phys Lett 76:2934

    Article  CAS  Google Scholar 

  30. Desu SB, Vijay DP (1995) Mat Sci Eng B 32:83

    Article  Google Scholar 

  31. Desu SB, Li T (1995) Mat Sci Eng B 34:L4

    Article  Google Scholar 

  32. Kato K, Zheng C, Finder JM, Dey SK, Totti Y (1998) J Am Ceram Soc 81:1869

    Article  CAS  Google Scholar 

  33. Desu SB, Vijay DP, Zhang X, He BP (1996) Appl Phys Lett 69:1719

    Article  CAS  Google Scholar 

  34. Wu Y, Cao GZ (1999) Appl Phys Lett 75:2650

    Article  CAS  Google Scholar 

  35. Wu Y, Cao GZ (2000) J Mater Sci Lett 15:267

    Article  Google Scholar 

  36. Venkataraman BH, Varma KBR (2003) J Phys Chem Solids 64:2015

    Google Scholar 

  37. Venkataraman BH, Varma KBR (2005) Ferroelectrics 324:121

    Article  CAS  Google Scholar 

  38. Aoyagi R, Takeda H, Okamura S, Shiosaki T (2005) Mat Sci Eng B 116:156

    Article  CAS  Google Scholar 

  39. Wu E (1989) POWD, an interactive powder diffraction data interpretation and indexing program, version 2.1. School of Physical Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia

  40. Subba Rao EC (1962) J Am Ceram Soc 45:166

    Article  CAS  Google Scholar 

  41. Watanabe H, Mihira T, Yoshimori H, De Araujo CAP (1995) Jpn J Appl Phys Part 1 34:5240

    Article  CAS  Google Scholar 

  42. Liu J, Zou G, Yang H, Cui Q (1994) Solid State Commun 90(6):365

    Google Scholar 

  43. Zhigao L, Bonnet JP, Ravez J, Hagenmuller P (1992) Solid State Ionics 57:235

    Google Scholar 

  44. Nealon TA (1987) Ferroelectrics 76:377

    CAS  Google Scholar 

  45. Jonscher AK, Hill RM, Pickup C (1985) J Mater Sci 20:4431

    Article  Google Scholar 

  46. Roling B, Happe A, Funke K, Ingram MD (1997) Phy Rev Lett 78:2160

    Article  CAS  Google Scholar 

  47. Lee WK, Liu JF, Nowick AS (1991) Phy Rev Lett 67:1559

    Article  CAS  Google Scholar 

  48. Lu Z, Bonnet JP, Ravez J, Hagenmuller P (1991) Eur J Solid State Inorg Chem 7(2):363

    Google Scholar 

  49. Jonscer AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  50. Badwal SPS (1988) In: Proceedings of the international seminar on solid state ionic devices. World scientific publishing, Singapore, p 165

  51. Macdonald JR (1987) Impedance spectroscopy. Wiely, New York

    Google Scholar 

  52. Sinclair DC, West AR (1989) J Appl Phys 66(8):3850

    Article  CAS  Google Scholar 

  53. IDEM (1994) J Mater Sci 29:6061

    Article  Google Scholar 

  54. Plocharski J, Wieczoreck W (1988) Solid State Ionics 28–30:979

    Article  Google Scholar 

  55. Jonscer AK (1977) Nature 267:673

    Article  Google Scholar 

  56. Williams G, Watts DC (1970) Trans Faraday Soc 23:625

    Google Scholar 

  57. Nagai KL, Martin SW (1989) PhysRev B 40:10050

    Google Scholar 

  58. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J PhysChem 78:639

    CAS  Google Scholar 

  59. Reqa JM, Rossignol S, Tanguy B, Paris MA, Rojo JM (1995) Snz J Solid State Ionics 80:283

    Article  Google Scholar 

  60. Zouari N, Mnif M, Khemakhem H, Mhiri T, Daoud A (1998) Solid State Ionics 110:269

    Article  CAS  Google Scholar 

  61. Zhigao L, Bonnet JP, Ravez J, Reau JM, Hagenmuller P (1992) Phys Chem Solids 53:1

    Article  Google Scholar 

  62. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  63. Angell CA (1990) Chem Rev 90:523

    Article  CAS  Google Scholar 

  64. Gerhardt R (1994) J Phys Chem Solids 55:1491

    Article  CAS  Google Scholar 

  65. Kim JS (2001) J Phys Soc Jpn 70:3129

    Article  CAS  Google Scholar 

  66. Liu J, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR (2003) J Chem Phys 119:2812

    Article  CAS  Google Scholar 

  67. James AR, Priya S, Uchino K, Srinivas K (2001) J Appl Phys 90:3504

    Article  CAS  Google Scholar 

  68. James AR (1997) Ph.D. Thesis, OU Hyderabad

  69. Prasad NV, Prasad G, Bhimashankaram T, Suryanarayana SV, Kumar GS (2001) Int J Mod Phys B 15:2053

    Article  CAS  Google Scholar 

  70. Chen TC, Thio CL, Desu SB (1997) J Mater Res 12(10):2628

    CAS  Google Scholar 

  71. Venkataraman BH, Varma KBR (2005) J Mater Sci Mater Electron 16(6):335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konapala Sambasiva Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambasiva Rao, K., Madhava Prasad, D., Murali Krishna, P. et al. Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics. J Mater Sci 42, 7363–7374 (2007). https://doi.org/10.1007/s10853-007-1555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1555-4

Keywords

Navigation