Skip to main content
Log in

Observation of high dielectric properties of Mg-substituted BST ceramic synthesized by conventional solid-state route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium strontium titanate exhibits ferroelectric or paraelectric behavior that depends upon the composition and other factors, making it suitable for several applications. We have adopted the conventional solid-state reaction route to synthesize magnesium-substituted barium strontium titanate with magnesium concentration (Mg = 0, 0.005, 0.010, and 0.015). X-ray diffraction has confirmed the perovskite cubic single phase. The dielectric studies were carried out as a function of temperature at different fixed frequencies (1 kHz, 10 kHz, 50 kHz, and 100 kHz) and as a function of frequency at room temperature. Curie’s temperature of pure BST was 96 °C, and for Mg-substituted BST samples, it dropped from 85 to 63 °C. The dielectric permittivity is firstly suppressed and then the maximum value observed for Mg content 0.015 and dielectric loss is also less than one. The remanence (Pr) and coercivity (Ec) are obtained and analyzed for ceramics samples. Improvement in dielectric properties due to substitution of magnesium is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Dere, J. Alloys Compd. 771, 471 (2019)

    Article  CAS  Google Scholar 

  2. Q. Xu, X.F. Zhang, Y.H. Huang, W. Chen, H.X. Liu, M. Chen, B.H. Kim, J. Alloys Compd. 488, 448 (2009)

    Article  CAS  Google Scholar 

  3. Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000)

    Article  CAS  Google Scholar 

  4. R. Rani, S. Singh, J.K. Juneja, K.K. Raina, C. Prakash, Ceram. Int. 37, 3755 (2011)

    Article  CAS  Google Scholar 

  5. J. Zhao, L. Li, Y. Wang, Z. Gui, in Materials Science and Engineering B: Solid-State Materials for Advanced Technology. (Elsevier, Amsterdam, 2003), pp. 207–210

    Google Scholar 

  6. B.D. Stojanovic, C.R. Foschini, V.B. Pavlovic, V.M. Pavlovic, V. Pejovic, J.A. Varela, Ceram. Int. 28, 293 (2002)

    Article  CAS  Google Scholar 

  7. P. Kumar, S. Singh, J.K. Juneja, C. Prakash, K.K. Raina, Phys. B Condens. Matter 404, 1752 (2009)

    Article  CAS  Google Scholar 

  8. A.O. Turky, A.E. Shalan, M.M. Rashad, H. Zhao, M. Bechelany, J. Mater. Sci. Mater. Electron. 29, 14582 (2018)

    Article  CAS  Google Scholar 

  9. S. Liu, X. Li, H. Ji, Q. Jia, J. Mater. Sci. Mater. Electron. 24, 2005 (2013)

    Article  CAS  Google Scholar 

  10. V. Tomar, P.A. Jha, P.K. Jha, P. Singh, J. Mater. Sci. Mater. Electron. 31, 5608 (2020)

    Article  CAS  Google Scholar 

  11. L. Gao, Z. Guan, S. Huang, K. Liang, H. Chen, J. Zhang, J. Mater. Sci. Mater. Electron. 30, 12821 (2019)

    Article  CAS  Google Scholar 

  12. X. Chou, J. Zhai, X. Yao, Appl. Phys. Lett. 91, 122908 (2007)

    Article  Google Scholar 

  13. A. Kumari, B. Dasgupta Ghosh, Adv. Appl. Ceram. 117, 427 (2018)

    Article  CAS  Google Scholar 

  14. P.K. Roy, B. Ponraj, K.B.R. Varma, Ceram. Int. 43, 15762 (2017)

    Article  CAS  Google Scholar 

  15. H. Wang, Y. Dong, Z. Wang, J. Alloys Compd. 745, 651 (2018)

    Article  CAS  Google Scholar 

  16. E.F. Alberta, R. Guo, A.S. Bhalla, Ferroelectrics (Taylor & Francis Group, Routledge, 2002), pp. 169–174

    Google Scholar 

  17. L.H. Chiu, L.C. Sengupta, S. Stowell, 54 (75) 73 Ceramic ferroelectric composite materials with enhanced electronic properties BSTO-MG based compounds-rare earth oxide (2000)

  18. S. Shalu, P. Kar, J. Krupka, B. Dasgupta Ghosh, Polym. Compos. 39, E1714 (2018)

    Article  CAS  Google Scholar 

  19. C.H. Lou, A.N. Chen, L. Lu, J.M. Wu, L.J. Cheng, R.Z. Liu, S. Chen, Y. Chen, Y.S. Shi, C.H. Li, J. Eur. Ceram. Soc. 39, 4149 (2019)

    Article  CAS  Google Scholar 

  20. O.P. Thakur, C. Prakash, D.K. Agrawal, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 96, 221 (2002)

    Article  Google Scholar 

  21. Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Int. J. Appl. Ceram. Technol. 7, E124 (2010)

    Article  Google Scholar 

  22. G.R. Love, J. Am. Ceram. Soc. 73, 323 (1990)

    Article  CAS  Google Scholar 

  23. B. Su, T.W. Button, J. Appl. Phys. 95, 1382 (2004)

    Article  CAS  Google Scholar 

  24. S.J. Gao, Results Phys. 16, 102884 (2020)

    Article  Google Scholar 

  25. S.F. Wang, J.P. Chu, C.C. Lin, T. Mahalingam, J. Appl. Phys. 98, 014107 (2005)

    Article  Google Scholar 

  26. S. Agrawal, R. Guo, D. Agrawal, A.S. Bhalla, Ferroelectrics 306, 155 (2004)

    Article  CAS  Google Scholar 

  27. B. Vigneshwaran, P. Kuppusami, S. Ajithkumar, H. Sreemoolanadhan, J. Mater. Sci. Mater. Electron. 31, 10446 (2020)

    Article  CAS  Google Scholar 

  28. J. Wang, J. Zhang, X. Yao, J. Alloys Compd. 505, 783 (2010)

    Article  CAS  Google Scholar 

  29. O.P. Thakur, C. Prakash, Phase Transit. 76, 567 (2003)

    Article  CAS  Google Scholar 

  30. Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, J. Eur. Ceram. Soc. 34, 1209 (2014)

    Article  CAS  Google Scholar 

  31. X. Wang, L. Zhang, H. Liu, J. Zhai, X. Yao, Mater. Chem. Phys. 112, 675 (2008)

    Article  CAS  Google Scholar 

  32. N.C. Pramanik, N. Anisha, P.A. Abraham, N.R. Panicker, J. Alloys Compd. 476, 524 (2009)

    Article  CAS  Google Scholar 

  33. W. Cai, C.L. Fu, J.C. Gao, C.X. Zhao, Adv. Appl. Ceram. 110, 181–185 (2011)

    Article  CAS  Google Scholar 

  34. S. Narendra Babu, J.H. Hsu, Y.S. Chen, J.G. Lin, J. Appl. Phys. 109(7), 07D911 (2011)

    Article  Google Scholar 

  35. V. Karol, C. Prakash, A. Sharma, AIP Conference Proceedings (American Institute of Physics Inc., College Park, 2020)

    Google Scholar 

  36. H. Liu, J. Zhu, Q. Chen, P. Yu, D. Xiao, Thin Solid Films 520, 3429 (2012)

    Article  CAS  Google Scholar 

  37. K.V. Saravanan, M.G. Krishna, K.C.J. Raju, J. Appl. Phys. 106, 114102 (2009)

    Article  Google Scholar 

  38. Y. Chen, X.L. Dong, R.H. Liang, J.T. Li, Y.L. Wang, J. Appl. Phys. 98, 064107 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF/CIL, Panjab Univerisity, Chandigarh for XRD and USIC, Babasaheb Bhimrao Ambedkar University, Lucknow for SEM study. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karol, V., Prakash, C. & Sharma, A. Observation of high dielectric properties of Mg-substituted BST ceramic synthesized by conventional solid-state route. J Mater Sci: Mater Electron 32, 19478–19486 (2021). https://doi.org/10.1007/s10854-021-06465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06465-6

Navigation