Skip to main content
Log in

Homogeneous and heterogeneous melting behavior of bulk and nanometer-sized Cu systems: a numerical study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been used to investigate the solid–liquid transition of different Cu systems. These consisted of surface-free crystalline bulks and semi-crystals terminating with a free surface as well as of particles and wires with different shape and size in the mesoscale regime. The characteristic melting points of the various systems were attained by gradual heating starting from 300 K. Apart from surface-free bulk systems, where the phase transition at the limit of superheating is homogeneous, melting displays heterogeneous character. This is due to the existence of surface layers with structural and energetic properties different from the ones of bulk-like interior. Simulations point out a significant depression of both the melting point and latent heat of fusion for nanometer-sized systems respect to semi-crystals. Below the characteristic melting point, free surfaces are involved in pre-melting processes determining the formation of a solid–liquid interface. The onset of melting is related to the formation of a critical amount of lattice defects and this provides a common basis for the rationalization of homogeneous and heterogeneous melting processes despite their intrinsic differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Moriarty P (2001) Rep Prog Phys 64:297

    Article  CAS  Google Scholar 

  2. Jortner J, Rao CNR (2002) Pure Appl Chem 74:1491

    Article  CAS  Google Scholar 

  3. Hill TL (2001) Nano Lett 1:273

    Article  CAS  Google Scholar 

  4. Alivisatos P (1996) Science 271:933

    Article  CAS  Google Scholar 

  5. Pawlow P (1909) Z Phys Chem (Munich) 65:1

    Article  CAS  Google Scholar 

  6. Hollomon TH, Turnbull D (1953) Prog Metal Phys 4:333

    Article  CAS  Google Scholar 

  7. Takagi M (1954) J Phys Soc Jpn 9:359

    Article  Google Scholar 

  8. Wronski CRM (1967) Br J Appl Phys 18:1731

    Article  CAS  Google Scholar 

  9. Coombes CJ (1972) J Phys F: Metal Phys 2:441

    Article  CAS  Google Scholar 

  10. Hanszen K-J (1960) Z Phys 157:523

    Article  CAS  Google Scholar 

  11. Buffat PH, Borel J-P (1976) Phys Rev A 13:2287

    Article  CAS  Google Scholar 

  12. Couchman PR, Jesser WA (1977) Nature 269:481

    Article  CAS  Google Scholar 

  13. Reiss H, Mirabel P, Whetten RL (1988) J Phys Chem 92:7241

    Article  CAS  Google Scholar 

  14. Sakai H (1996) Surf Sci 351:285

    Article  CAS  Google Scholar 

  15. Peters KF, Cohen JB, Chung Y-W (1998) Phys Rev B 57:13430

    Article  CAS  Google Scholar 

  16. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Phys Rev Lett 77:99

    Article  CAS  Google Scholar 

  17. Yu Efremov M, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry LS, Allen LH (2000) Phys Rev Lett 85:3560

    Article  Google Scholar 

  18. Zhang M, Yu Efremov M, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Greene JE, Allen LH (2000) Phys Rev B 62:10548

    Article  CAS  Google Scholar 

  19. Olson EA, Yu Efremov M, Zhang M, Zhang Z, Allen LH (2005) J Appl Phys 97:034304

    Article  Google Scholar 

  20. Dash JG (2002) Contemp Phys 43:427

    Article  CAS  Google Scholar 

  21. Stillinger FH, Weber TA (1984) Science 228:983

    Article  Google Scholar 

  22. Kleinert H (1989) Gauge theory in condensed matter. World Scientific, Singapore

    Google Scholar 

  23. Tallon JL (1989) Nature 342:658

    Article  CAS  Google Scholar 

  24. Lu K, Li Y (1998) Phys Rev Lett 80:4474

    Article  CAS  Google Scholar 

  25. Cahn RW (2001) Nature 413:582

    Article  CAS  Google Scholar 

  26. Jin ZH, Gumbsch P, Lu K, Ma E (2001) Phys Rev Lett 87:055703

    Article  CAS  Google Scholar 

  27. Lindemann FA (1910) Phys Z 11:609

    CAS  Google Scholar 

  28. Gilvarry JJ (1956) Phys Rev 102:308

    Article  CAS  Google Scholar 

  29. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford

    Google Scholar 

  30. Kosterlitz J, Thouless DJ (1973) J Phys C 6:1181

    Article  CAS  Google Scholar 

  31. Nelson DR, Halperin BI (1979) Phys Rev B 19:2457

    Article  CAS  Google Scholar 

  32. Young AP (1979) Phys Rev B 19:1855

    Article  CAS  Google Scholar 

  33. Burakovsky L, Preston D, Silbar R (2000) Phys Rev B 61:15011

    Article  CAS  Google Scholar 

  34. Gomez L, Dobry A, Geuting Ch, Diep HT, Burakovsky L (2003) Phys Rev Lett 90:095701

    Article  CAS  Google Scholar 

  35. Gomez L, Gazza C, Dacharry H, Penaranda L, Dobry A (2005) Phys Rev B 71:134106

    Article  Google Scholar 

  36. Broughton JQ, Gilmer GH (1986) Phys Rev Lett 56:2692

    Article  CAS  Google Scholar 

  37. Rosato V, Ciccotti G, Pontikis V (1986) Phys Rev B 33:1860

    Article  CAS  Google Scholar 

  38. Honeycutt JD, Andersen HC (1987) J Phys Chem 91:4950

    Article  CAS  Google Scholar 

  39. Phillpot SR, Lutsko JF, Wolf D, Yip S (1989) Phys Rev B 40:2831

    Article  CAS  Google Scholar 

  40. Lutsko JF, Wolf D, Phillpot SR, Yip S (1989) Phys Rev B 40:2841

    Article  CAS  Google Scholar 

  41. Hall BD, Flueli M, Monot R, Borel J-P (1991) Phys Rev B 43:3906

    Article  CAS  Google Scholar 

  42. Cleveland CL, Luedtke WD, Landman U (1999) Phys Rev B 60:5065

    Article  CAS  Google Scholar 

  43. Qi Y, Ĉağin T, Johnson WL, Goddard WA III (2001) J Chem Phys 115:385

    Article  CAS  Google Scholar 

  44. Delogu F (2005) Phys Rev B 72:205418

    Article  Google Scholar 

  45. Ducastelle F (1970) J Phys (Paris) 31:1055

    Article  Google Scholar 

  46. Rosato V, Guillope M, Legrand B (1989) Phil Mag A 59:321

    Article  Google Scholar 

  47. Cleri F, Rosato V (1993) Phys Rev B 48:22

    Article  CAS  Google Scholar 

  48. Wollenberger HJ (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th edn. Amsterdam, North Holland

  49. Brandes EA, Brook GB (eds) (1992) Smithells metals reference handbook, 7th edn. Butterworth-Heinemann, Oxford

  50. Finnis MW, Sinclair JF (1984) Phil Mag A 50:45

    Article  CAS  Google Scholar 

  51. Daw MS, Baskes MI (1984) Phys Rev B 29:6443

    Article  CAS  Google Scholar 

  52. Andersen HC (1980) J Chem Phys 72:2384

    Article  CAS  Google Scholar 

  53. Nose’ S (1984) J Chem Phys 81:511

    Article  Google Scholar 

  54. Parrinello M, Rahman A (1981) J Appl Phys 52:7182

    Article  CAS  Google Scholar 

  55. Allen MP, Tildesley D (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  56. Li J, Van Vliet KJ, Zhu T, Yip S, Suresh S (2002) Nature 418:307

    Article  CAS  Google Scholar 

  57. Belonoshko A, Skorodumova NV, Rosengren A, Johansson B (2006) Phys Rev B 73:012201

    Article  Google Scholar 

  58. Somer FL Jr, Canright GS, Kaplan T (1998) Phys Rev E 58:5748

    Article  CAS  Google Scholar 

  59. Quinn RA, Goree J (2001) Phys Rev E 64:051404

    Article  CAS  Google Scholar 

  60. Tartaglino U, Zykova-Timan T, Ercolessi F, Tosatti E (2005) Phys Rep 411:291

    Article  CAS  Google Scholar 

  61. Zheng XH, Grieve R (2006) Phys Rev B 73:064205

    Article  Google Scholar 

  62. Delogu F (2005) J Phys Chem B 109:15291

    Article  CAS  Google Scholar 

  63. Delogu F (2006) J Phys Chem B 110:3281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. L. Burakovsky, Theoretical Division, Los Alamos National Laboratory, U.S.A., and Prof. G. Cocco, Department of Chemistry, University of Sassari, Italy, are gratefully acknowledged for stimulating discussions and useful suggestions. A. Ermini, ExtraInformatica s.r.l., is gratefully acknowledged for his kind assistance. Financial support was given by the University of Cagliari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Delogu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manai, G., Delogu, F. Homogeneous and heterogeneous melting behavior of bulk and nanometer-sized Cu systems: a numerical study. J Mater Sci 42, 6672–6683 (2007). https://doi.org/10.1007/s10853-007-1522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1522-0

Keywords

Navigation