Skip to main content
Log in

Preparation of plasma poly(1-isoquinolinecarbonitrile) thin film and its ultrafast nonlinear optical property

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

How to get a uniform, defect-free, and reproducible conjugated polymer thin films is now becoming the main fabrication problem for the practical application of these materials as the fast switches and modulators in opto-electronic devices. In this research, a novel plasma-polymerized 1-isoquinolinecarbonitrile (PPIQCN) thin film was prepared by plasma polymerization under different glow discharge conditions. The effect of the discharge power on the chemical structure and surface compositions of the deposited PPIQCN films was investigated by Fourier transform infrared (FTIR), UV-Visible absorption spectra and X-ray photoelectron spectroscopy (XPS). The results show that a high retention of the aromatic ring structure of the starting monomer in the deposited plasma films is obtained when a low discharge power of 10 W was used during film formation. In the case of higher discharge power of 30 W, more severe monomer molecular fragmentation can be observed, which results in a decrease in the effective conjugation length of PPIQCN film. The morphology characterized by atomic force microscopy (AFM) indicates that a fine, homogenous PPIQCN film could be obtained under a relatively low discharge power. A femtosecond time-resolved optical Kerr effect technique at a wavelength of 820 nm has been applied to investigate the third-order nonlinearity of the plasma PPIQCN film. For the first time, a non-resonant optical Kerr effect and ultrafast response of the PPIQCN film was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. GRANSTORM, M. BERGGREN and O. INGANAS, Science 267 (1995) 1479.

    Google Scholar 

  2. A. R. BROWN, A. POMP, C. M. HART and D. M. DE LEEUW, ibid. 270 (1995) 972.

    CAS  Google Scholar 

  3. P. DYREKLEV, M. BERGGREN, O. INGANAS, M. R. ANDERSSON and O. WENNERSTORM, Adv. Mater. 7 (1995) 43.

    Article  CAS  Google Scholar 

  4. T. Q. ZHANG, S. F. WANG, Q. H. GONG, J. G. LUO and C. Q. LUO, Chem. Phys. Lett. 325 (2000) 127.

    Article  CAS  Google Scholar 

  5. Q. H. GONG, D. QING and H. Y. CHEN, in Proceeding of International Conference on Laser (STSs Press, Mclean, 1992).

    Google Scholar 

  6. H. Y. CHEN, Y. K. HE and F. GENG, Chin. Chem. Lett. 5 (1994) 197.

    CAS  Google Scholar 

  7. V. A. KABANOV and V. P. ZUBOV, J. Polym. Sci. Part C 4 (1964) 1009.

    Google Scholar 

  8. E. OIKAWA and S. KAMBARA, Polym. Lett. 2 (1964) 649.

    Article  CAS  Google Scholar 

  9. F. F. SHI, Surf. Coat. Technol. 82 (1996) 1.

    Article  CAS  Google Scholar 

  10. H. BIEDERMAN and D. SLAVINSKA, ibid. 125 (2000) 371.

    Article  CAS  Google Scholar 

  11. H. Y. KIM and H. K. YASUDA, J. Vac. Sci. Technol. A15 (1997) 1837.

    Google Scholar 

  12. R. D. AGOSTINO, in “Plasma Deposition, Treatment and Etching of Polymers” (Academic, Orlando, 1990).

    Google Scholar 

  13. G. H. YANG, Y. ZHANG, E. T. KANG, K. G. NEOH, A. C. H. HUAN and D. M. Y. LAI, J. Mater. Chem. 12 (2002) 426.

    Article  CAS  Google Scholar 

  14. L. M. HAN, R. B. TIMMONS, W. W. LEE, Y. CHEN and Z. HU, J. Appl. Phys. 84 (1998) 439.

    Article  CAS  Google Scholar 

  15. L. M. HAN, R. B. TIMMONS and W. W. LEE, J. Vac. Sci. Technol. B 18 (2000) 799.

    Article  CAS  Google Scholar 

  16. J. H. LAMBERT, D. A. LIGHTNER, H. F. SHURVELL and R. G. COOKS, in “Introduction to Organic Spectroscopy” (Macmillan Publishing, New York, 1987).

    Google Scholar 

  17. X. Y. ZHAO, X. HU, Y. K. HE and H. Y. CHEN, Polym. Eng. Sci. 40 (2000) 2551.

    Article  CAS  Google Scholar 

  18. L. SABDRIN, M. S. SILVERSTEIN and E. SACHER, Polymer 42 (2001) 3761.

    Article  Google Scholar 

  19. M. S. SILVERSTEIN and I. VISOLY-FISHER, ibid. 43 (2002) 11.

    Article  CAS  Google Scholar 

  20. G. BEAMSON and D. BRIGGS, in “High Resolution XPS of Organic Polymers” (Wiley, New York, 1992).

    Google Scholar 

  21. N. INAGKI, S. TASAKA and Y. IKEDA, J. Appl. Polym. Sci. 55 (1995) 1451.

    Article  Google Scholar 

  22. J. E. HUHEEY, in “Inorganic Chemistry, Appendix F” (Harper and Row, New York, 1978).

    Google Scholar 

  23. R. CHEN and M. S. SILVERSTEIN, J. Polym. Sci. A: Polym. Chem. 34 (1996) 207.

    Article  CAS  Google Scholar 

  24. C. F. WANG, X. Y. ZHAO, H. Y. CHEN, Z. J. XIA and Y. H. ZOU, Appl. Phys. B 64 (1997) 45.

    Article  Google Scholar 

  25. G. H. MA, L. J. GUO, J. MI, Y. LIU, S. X. QIAN, D. C. PAN and Y. HUANG, Thin Solid Films 410 (2002) 205.

    Article  CAS  Google Scholar 

  26. Y. R. SHEN, in “The Principles of Nonlinear Optics” (Wiley, New York, 1984).

    Google Scholar 

  27. P. P. HO and R. R. ALFANO, Phys. Rev. A 20 (1979) 2170.

    Article  CAS  Google Scholar 

  28. W. HUANG, S. WANG, Q. GONG, H. ZHAN and D. ZHU, Chem. Phys. Lett. 350 (2001) 99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong-Yan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, MZ., Feng, SB. & Zhao, XY. Preparation of plasma poly(1-isoquinolinecarbonitrile) thin film and its ultrafast nonlinear optical property. J Mater Sci 41, 3609–3615 (2006). https://doi.org/10.1007/s10853-006-6302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-6302-8

Keywords

Navigation