Skip to main content
Log in

Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Models and theories for predicting the thermal conductivity of polymer composites were discussed. Effective Medium Theory (EMT), Agari model and Nielsen model respectively are introduced and are applied as predictions for the thermal conductivity of ceramic particle filled polymer composites. Thermal conductivity of experimentally prepared Si3N4/epoxy composite and some data cited from the literature are discussed using the above theories. Feasibility of the three methods as a prediction in the whole volume fraction region of the filler from 0 to 1 was evaluated for a comparison. As a conclusion: both EMT and Nielsen model can give a well prediction for the thermal conductivity at a low volume fraction of the filler; Agari model give a better prediction in the whole range, but with larger error percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bae JW, Kim W, Cho SH, Lee SH (2003) J Mater Sci 35(23):5907

    Article  Google Scholar 

  2. Wong CP, Bollampally RS (1999) IEEE Trans Adv Packag 22(1):54

    Article  CAS  Google Scholar 

  3. Gonon P, Sylvestre A, Teysseyre J, Prior C (2001) J Mater Sci Mater Electron 12(2):81

    Article  CAS  Google Scholar 

  4. Kumbhat N, Raj PM, Pucha RV, Atmur S (2005) Proc Electron Compon Technol Conf 2:1364

    Google Scholar 

  5. Siu B (1995). IEEE Reg 10 Annu Int Conf Proc TENCON 234

  6. Progelhof RC, Throne JL, Ruetsch RR (1976) Polym Eng Sci 16(9):615

    Article  CAS  Google Scholar 

  7. Procter P, Solc (1991) IEEE Trans Compon Hybrids Manuf Technol 14(4):708

    Article  CAS  Google Scholar 

  8. Nagai Y, Lai GC (1997) J Ceram Soc Jpn 105(3):197

    Article  CAS  Google Scholar 

  9. Kirkpatrick S (1973) Rev Mod Phys 45(4):574

    Article  Google Scholar 

  10. Ruschau GR, Yoshikawa S, Newnham RE (1992) J Appl Phys 72(3):953

    Article  CAS  Google Scholar 

  11. Bruggeman DAG (1935) Ann Phys 24:636

    Article  CAS  Google Scholar 

  12. Hsu WY, Berzins T (1985) J Polym Sci Polym Phy Ed 23(5):933

    Article  CAS  Google Scholar 

  13. Shin FG, Tsui WL, Yeung YY (1993) J Mater Sci Lett 12(20):1632

    Article  CAS  Google Scholar 

  14. Kutcherov V, Håkansson B, Ross RG, Backstrom G (1991) J Appl Phys 71(4):1732

    Article  Google Scholar 

  15. Håkansson B, Ross RG (1990) J Appl Phys 68(7):3285

    Article  Google Scholar 

  16. Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Int J Heat Mass Transf 48:2150

    Article  Google Scholar 

  17. Hui PM, Zhang X, Markworth A, Stroud D (1999) J Mater Sci 34:5497

    Article  CAS  Google Scholar 

  18. Landauer R (1978) In: Garland JC, Tanner DB (eds) American institute of physics conference proceedings: electrical transport and optical properties of inhomogeneous media (American Institute of Physics, New York), No. 40

  19. Agri Y, Uno T (1986) J Apply Polym Sci 32:5705

    Article  Google Scholar 

  20. Nielsen LE (1970) J Apply Phys 41(11):4626

    Article  Google Scholar 

  21. Nielsen LE (1974) Ind Eng Chem Fundam 13(1):17

    Article  CAS  Google Scholar 

  22. Nielsen LE (1973) J Appl Polym Sci 17:3819

    Article  Google Scholar 

  23. Tan JC, Tsipas SA, Golosnoy IO, Curran JA, Paul S, Clyne TW (2006) Surf Coat Technol 201:1414

    Article  CAS  Google Scholar 

  24. Curran JA, Clyne TW (2005) Surf Coat Technol 199:177

    Article  CAS  Google Scholar 

  25. Helsing J, Helte A (1990) J Appl Phys 69(6):3583

    Article  Google Scholar 

  26. Hasselman DPH, Johnson LF (1987) J Compos Mater 21:508

    Article  Google Scholar 

  27. Torquato S, Beasley JD, Chiew YC (1988) J Chem Phy 88(10):6540

    Article  Google Scholar 

  28. Ganapathy D, Singh K, Phelan PE, Prasher R (2005) Trans ASME J Heat Transf 127(6):553

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Nature Science Foundation of China (Grant No. 50472019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renli Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Fu, R., Han, Y. et al. Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions. J Mater Sci 42, 6749–6754 (2007). https://doi.org/10.1007/s10853-006-1480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1480-y

Keywords

Navigation