Skip to main content
Log in

Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the preparation of a processible magnetite/polyaniline (Fe3O4/PANI) nanocomposite, containing dodecylbencensulfonic acid (DBSA) as a surfactant and dopant, with both magnetic and conducting properties. Different amounts of Fe3O4 nanoparticles were successfully disposed with FeCl3 solution to prevent their aggregation in the solution by the application of common ion effect. The magnetic properties of the resulting composites were investigated by a quantum design magnetometer (PMPS). The (Fe3O4/PANI) nanocomposite showed at 300 K no loop of hysteresis indicating the superparamagnetic nature. The saturation magnetization varies from 0.167 to 28.45 emu/g with increasing Fe3O4 content. Zero field cooling (ZFC) and Field cooling (FC) profiles showed that the polyaniline matrix allows each ferrite nanoparticles to behave independently and interparticle interactions are not important for iron oxide content lower than 36 wt.%. The electrical conductivity of composites was found to be higher than that of the pure PANI in spite of the insertion of the insulating material Fe3O4 particles. It is noticeable that conductivity increases with low Fe3O4 particles content and then decreases. Structural characterization by X-ray diffraction (XRD), UV spectroscopy and thermogravimetric analysis (TGA) have been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kawaguchi H (2000) Prog Polym Sci 25(8):1171

    Article  CAS  Google Scholar 

  2. Gómez-Romero P (2001) Adv Mater 13(3):163

    Article  Google Scholar 

  3. Marchessault RH, Rioux P, Raymond L (1992) Polymer 33(19):4024

    Article  CAS  Google Scholar 

  4. Wan M, Zhou W, Li J (1996) Synth Met 78:27

    Article  CAS  Google Scholar 

  5. Lin J, Wan MX (2000) J Polym Sci Part A Polym Chem 38(15):2734

    Article  Google Scholar 

  6. Zhang Z, Wan M (2003) Synth Met 132:205

    Article  CAS  Google Scholar 

  7. Wan MX, Li J (1997) J Polym Sci Part A 35(11):2129

    Article  CAS  Google Scholar 

  8. Aphesteguy J, Jacobo S (2004) Physica B 354(1–4):224

    Article  Google Scholar 

  9. Long Y, Chen Z, Duvail J, Zhang Z, Wan M (2005) Physica B 370:121

    Article  CAS  Google Scholar 

  10. Chen A, Wang H, Zhao B, Li X (2003) Synth Met 139:411

    Article  CAS  Google Scholar 

  11. Cao Y, Smith P, Heeger AJ (1992) Synth Met 48:91

    Article  CAS  Google Scholar 

  12. Cao Y, Smith P (1993) Polymer 34:3139

    Article  CAS  Google Scholar 

  13. Gustafsson G, Cao Y, Treac GM, Klavetter F, Colaneri N, Heeger AJ (1992) Nature 357:477

    Article  CAS  Google Scholar 

  14. Yin W, Ruckenstein E (2000) Synth Met 108:39

    Article  CAS  Google Scholar 

  15. Laska J, Widlarz J (2005) Polymer 46:1485

    Article  CAS  Google Scholar 

  16. JCPPS Power Diffraction File International Center for Diffraction Data (1980) Fe3O4, Newtown Square, PA

  17. Wang XH, Geng YH, Wang LX, Jing XB, Wang FS (1995) Synth Met 69:265

    Article  CAS  Google Scholar 

  18. Liebert J, Cornil J, Dos Santos DA, Brédas J (1997) Phys Rev B 56(14):8638

    Article  Google Scholar 

  19. Zhang W, Min Y, MacDiarmid AG, Angelopoulos M, Liao YH, Epstein AJ (1997) Synth Met 84:109

    Article  Google Scholar 

  20. Sunderland K, Brunetti P, Spinu L, Fang J, Wang Z, Lu W (2004) Mater Lett 58:3136

    Article  CAS  Google Scholar 

  21. Tang B, Geng Y, Sun Q, Zang X, Jing X (2000) Pure Appl Chem 72:157

    CAS  Google Scholar 

  22. Cornell RM, Schwertmann U (1996) The iron oxides. VCH, Weinheim

    Google Scholar 

  23. Chen DH, Chen YY (2002) Mater Res Bull 37:801

    Article  CAS  Google Scholar 

  24. Zhang Z, Wan M (2003) Synth Met 132:205

    Article  CAS  Google Scholar 

  25. Nguyen T, Diaz A (1994) Adv Mater 6:858

    Article  CAS  Google Scholar 

  26. Zhang L, Papaefthymiou G, Ying J (1997) J Appl Phys 81:6892

    Article  CAS  Google Scholar 

  27. Gangopadhyay R, De A (1999) Eur Polym J 35:1985

  28. Chen A, Wang H, Li X (2004) Synth Met 145:153

    Article  CAS  Google Scholar 

  29. Zhang L, Wan M (2003) J Phys Chem B 107:6748

    Article  CAS  Google Scholar 

  30. Su S, Kuramoto N (2000) Synth Met 114:147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Troiani (CAB-CNEA) for TEM images. This work is supported by the University of Buenos Aires (grant I–055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia E. Jacobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aphesteguy, J.C., Jacobo, S.E. Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties. J Mater Sci 42, 7062–7068 (2007). https://doi.org/10.1007/s10853-006-1423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1423-7

Keywords

Navigation