Skip to main content

Advertisement

Log in

The physical and photo electrochemical characterization of the crednerite CuMnO2

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CuMnO2 is prepared via Cu+ → Li+ exchange in molten copper (I) chloride. It crystallizes in a monoclinic structure (SG C2/m) where the MnO6 octahedra elongation is ascribed to the Yahn–Teller (Y–T) effect of Mn3+ ions. From chemical analysis, the oxide is more accurately formulated as CuMnO2.01. Above 250 °C, it undergoes a reversible transition to spinel CuxMn3−xO4 and beyond 940 °C it converts back to Cu1.1Mn0.9O2. Extrapolation of high-temperature magnetic data indicates T-intercept θ p of −450 K and an effective moment of 5.22 μB, consistent with strong antiferromagnetism in the basal plans and high spin (HS) configuration Mn3+. This value is slightly larger than that of the spin only moment, a behavior ascribed to Cu2+ originating from oxygen insertion. As prepared, CuMnO2 displays p-type conductivity with an activation energy of 0.16 eV. Most holes generated upon band gap excitation are trapped on Cu+ ions and the conduction occurs by small polarons hopping between neighboring sites. The linear increase of thermopower for Cu1.05Mn0.95O2 with temperature indicates a hole mobility μ300 K (3.5 × 10-6 cm2 V−1 s−1) thermally activated. CuMnO2 is made p- and n-type and the difference in the carriers mobilities is attributed to different oxygen polyhedra. The title oxide, characterized photo electrochemically, exhibits a pH-insensitive flat band potential (+0.13 VSCE). The valence band, located at 5.3 eV below vacuum, is made up of Cu 3d orbital. As application, the powder showed a good performance for the H2-photo evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Copper crystallizes in a body centered cubic with a lattice constant of 0.256 nm.

References

  1. Turner JA (2004) Science 305:972

    Article  CAS  Google Scholar 

  2. Marquardt MA, Ashmore NA, Cann DP (2006) Thin Solid Films 496:146

    Article  CAS  Google Scholar 

  3. Li J, Sleight AW, Jones CY, Toby BH (2005) J Solid State Chem 178:285

    Article  CAS  Google Scholar 

  4. Doumerc JP, Wichainchai A, Ammar A, Pouchard M, Hagenmeller P (1986) Mater Res Bull 21:745

    Article  CAS  Google Scholar 

  5. Subrahmanyam A, Barik UK (2005) J Phys Chem Solids 66:817

    Article  CAS  Google Scholar 

  6. Bruce Gall R, Nathan Ashmore, Meagen Marquardt A, Xiaoli Tan, David P (2005) Can J Alloys Compd 391:262

    Article  Google Scholar 

  7. Younsi M, Aider A, Bouguelia A, Trari M (2005) Solar Energy 78:574

    Article  CAS  Google Scholar 

  8. Bessekhouad Y, Trari M, Doumerc JP (2003) Int J Hydrogen Energy 28:43

    Article  CAS  Google Scholar 

  9. Shin YJ, Doumerc JP, Dordor P, Delmas C, Pouchard M, Hagenmuller P (1993) J Solid State Chem 107:303

    Article  CAS  Google Scholar 

  10. Doumerc JP, Trari M, Töpfer J, Fournès L, Grenier JC, Pouchard M, Hagenmuller P (1994) Eur J Solid State Chem 31:705

    CAS  Google Scholar 

  11. Stanley KJ (1972) Oxide magnetic materials. Clarendon, Oxford

    Google Scholar 

  12. Dordor P, Marquestaut E, Villeneuve G (1980) Rev Phys Appl 15:1607

    Article  CAS  Google Scholar 

  13. Saadi S, Bouguelia A, Trari M (2006) Solar Energy 80:272

    Article  CAS  Google Scholar 

  14. Trari M, Töpfer J, Dordor P, Grenier JC, Pouchard M, Doumerc JP (2005) J Solid State Chem 178:2751

    Article  CAS  Google Scholar 

  15. Töpfer J, Trari M, Gravereau P, Chaminade JP, Doumerc JP (1995) Z Krist 210:184

    Article  Google Scholar 

  16. Shannon RD (1976) Acta Cryst A 32:751

    Article  Google Scholar 

  17. Koriche N, Bouguelia A, Trari M (2007) J Mater Sci, doi:10.1007/s10853-006-0741-0

    Article  CAS  Google Scholar 

  18. Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New York

    Book  Google Scholar 

  19. Trari M (1994) Ph.D Thesis, Bordeaux University

  20. Kittel C (1988) Physique de l’Etat Solide, Dunod Université

  21. Lide DR (Editor in Chief) (1997–1998) Handbook of chemistry and physics, 78th edn. CRS press

  22. Rogers DB, Shannon RD, Prewitt CT, Gillson JL (1971) Inorg Chem 10:723

    Article  Google Scholar 

  23. Trestmann-Matts V, Dorris SE, Kumarakrishnan S, Mason TO (1983) Am J Ceram Soc 66:829

    Article  Google Scholar 

  24. Doumerc JP (1994) J Solid State Chem 110:419

    Article  Google Scholar 

  25. Marsh DB, Parris PE (1996) Phys Rev B 54(11):7720

    Article  CAS  Google Scholar 

  26. Butler MA, Ginley DS (1980) J Electrochem Soc 127:1273

    Article  CAS  Google Scholar 

  27. Alexéev V (1976) Analyse qualitative, ed. Mir

  28. Benko FA, Koffyberg FP (1987) J Phys Chem Solids 48:431

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Faculty of Chemistry (Algiers) under the contact No. E1602/07/04. The authors would like to thank B. Biri for his technical assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessekhouad, Y., Gabes, Y., Bouguelia, A. et al. The physical and photo electrochemical characterization of the crednerite CuMnO2 . J Mater Sci 42, 6469–6476 (2007). https://doi.org/10.1007/s10853-006-1250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1250-x

Keywords

Navigation