Skip to main content
Log in

Mechanical improvement of hydroxyapatite by TiO x nanoparticles deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Deposition of Ti was carried out by laser ablation onto hydroxyapatite porous discs in an Ar atmosphere. Ti nanoparticles were deposited onto HAp surface in order to modify its roughness and morphology as it is observed by scanning electron microscopy (SEM) and scanning probe microscopy (SPM). A homogeneous distribution of Ti over the disc surface was corroborated by elemental mapping. A comparison of the hydroxyapatite hardness before and after deposition was performed using SPM nanoindentation. Transmission Electron Microscopy (TEM) showed that the Ti nanoparticles obtained were covered by an oxygen shell. It is shown that surface modifications of the covered HAp by Ti result in better mechanical properties, reducing the possible damage to the HAp ceramic by friction or impacts as it often happens in meniscus, bone junctions and the inclusion of prosthesis for human treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chern-Lin JH, Chen KS, Ju CP (1995) Mat Chem Phys 41:282

    Article  CAS  Google Scholar 

  2. Kurashina K, Kurita M, Hirano HM, de Bliek JMA, Klein CAT, de Groot K (1995) J Mat Sci Mat Med 6:340

    Article  CAS  Google Scholar 

  3. Rodríguez-Lugo V, Ascencio JA, Angeles-Chavez C, Camacho-Bragado A, Castaño VM (2001) Mat Techn 16:97

    Google Scholar 

  4. Zhang LJ, Feng XS, Liu HG, Qian DJ, Zhang L, Yu XL, Cui FZ (2004) Mat Lett 58:719

    Article  CAS  Google Scholar 

  5. Ascencio JA, Rodriguez-Lugo V, Angeles C, Santamaria T, Castano VM (2002) Comp Mat Sci 25:413

    Article  CAS  Google Scholar 

  6. Fernández ME, Zorrilla-Cangas C, García-García R, Ascencio JA, Reyes-Gasga J (2003) Acta Cryst B59:175

    Google Scholar 

  7. Souto RM, Laz MM, Reis RL (2003) Biomaterials 24:4213

    Article  CAS  Google Scholar 

  8. Fricain JC, Granja PL, Barbosa MA, de Jéso B, Barthe N, Baquey C (2002) Biomaterials 23:971

    Article  CAS  Google Scholar 

  9. Ignjatović N, Savić V, Najman S, Plavšić M, Uskoković D (2001) Biomaterials 22:571

    Article  Google Scholar 

  10. Li J, Chen Ch, Zhao J, Zhu H, Orthman J (2002) App Cat B: Env 37:331

    Article  CAS  Google Scholar 

  11. Meng WJ, Titsworth RC, Rehn LE (2000) Thin Solid Films 377–378:222

    Article  Google Scholar 

  12. Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ (2000) Nature 408:67

    Article  CAS  Google Scholar 

  13. Ascencio JA, Perez-Alvarez M, Molina LM, Santiago P, José-Yacaman M (2003) Surf Sci 526:243

    Article  CAS  Google Scholar 

  14. Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen SR, Tenne R (1997) Nature 387:791

    Article  CAS  Google Scholar 

  15. Chowalla M, Amaratunga GAJ (2000) Nature 407:164

    Article  Google Scholar 

  16. Ullmann M, Friedlander SK, Schmidt-Ott A (2002) J Nanop Res 4:499

    Article  CAS  Google Scholar 

  17. Makino T, Susuki N, Yamada Y, Yoshida T, Seto T, Aya N (1999) App Phys A 69:S243

    Article  CAS  Google Scholar 

  18. Koshizaki N, Narazaki A, Sasaki T (2002) App Surf Sci 197–198:624

    Article  Google Scholar 

  19. Gamaly EG, Rode AV, Perrone A, Zocco A (2001) App Phys A 73:143

    Article  CAS  Google Scholar 

  20. Fu ZW, Zhou MF, Qin QZ (1997) App Phys A 65:445

    Article  CAS  Google Scholar 

  21. Doeswijk LM, Rijnders G, Blank DHA (2004) App Phys A 78:263

    Article  CAS  Google Scholar 

  22. Nichols WT, Malyavanatham G, Henneke DE, Brock JR, Becker MF, Keto1 JW, Glicksman HD (2000) J Nanop Res 2:141

    Article  CAS  Google Scholar 

  23. Escobar-Alarcón L, Villagran M, Haro-Poniatowski E, Alonso JC, Fernández-Guasti M, Camps E (1999) App Phys A 69:s583

    Article  Google Scholar 

  24. Díaz-Estrada JR (1998) Preparación y caracterización de esferas de hidroxiapatita para globo ocular, Mexico, Chemical Engineering Thesis; U.N.A.M

  25. Park JB, (1984) Biomaterials science and engineering. New York, Plenum Press

    Google Scholar 

  26. Liu Y, Sethuraman G, Wu W, Nancollas GH, Grynpas M (1997) J Coll Interf Sci 186:102

    Article  CAS  Google Scholar 

  27. Bischel MS, Vanlandingham MR, Eduljee RF, Gillespie JW, Schultz JM (2000) J Mat Sci 35:221

    Article  CAS  Google Scholar 

  28. CSM Instruments. Advanced mechanical surface testing; overview of mechanical testing standards, (Application Bulletin 18, 2002)

Download references

Acknowledgements

The authors are indebt to L. Carapia, because his technical help in the SEM study. And particularly thank the support of G. Canizal and L. Martínez. for AFM analysis. Especially we want to thank the collaboration of P. Santiago for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Ascencio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Estrada, J.R., Camps, E., Escobar-Alarcón, L. et al. Mechanical improvement of hydroxyapatite by TiO x nanoparticles deposition. J Mater Sci 42, 1360–1368 (2007). https://doi.org/10.1007/s10853-006-1216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1216-z

Keywords

Navigation