Skip to main content
Log in

Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy—defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy—the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The stress to nucleate a dislocation from a grain boundary in a nanocrystalline columnar simulated microstructure was found to be 2.3 GPa [26], while in a fully 3D microstructure of the same material it was found to be less than 2.0 GPa [28].

  2. For example, the formation energy of a vacancy for the interatomic potential used in this study [19] is 0.64–0.68 eV/atom, while the strain energy for 1% strain is only 0.001 eV/atom.

References

  1. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  2. Wolf D, Yamakov V, Phillpot SR, Mukherjee AK, Gleiter H (2005) Acta Mater 53:1

    Article  CAS  Google Scholar 

  3. Griffith AA (1920) Philos Trans Roy Soc Lond A221:163

    Google Scholar 

  4. Orowan E (1945) Trans Inst Eng Shipbuilders Scotl 89:165

    CAS  Google Scholar 

  5. Irwin GR (1948) Fracture Dynamics in Fracture of metals. American Society of Metals, Cleveland, p. 147

  6. Kysar JW (2003) J Mech Phys Solids 51:795

    Article  Google Scholar 

  7. Wolf D (1990) J Mater Res 5:1708

    CAS  Google Scholar 

  8. Hoagland RG (1997) Philos Mag A 76:543

    CAS  Google Scholar 

  9. Cleri F, Phillpot SR, Wolf D (1999) Interface Sci 7:45

    Article  CAS  Google Scholar 

  10. Farkas D (2000) Philos Mag A 80:1425

    Article  CAS  Google Scholar 

  11. Farkas D, Van Swygenhoven H, Derlet PM (2002) Phys Rev B 66:060101

    Article  Google Scholar 

  12. Rudd RE, Belak JF (2002) Comp Mater Sci 24:148

    Article  CAS  Google Scholar 

  13. Golubovic L, Peredera A, Golubovic M (1995) Phys Rev E 52:4640

    Article  CAS  Google Scholar 

  14. Grujicic M, Zhao H, Krasko GL (1997) Int J Refract Metals Hard Mater 15:341

    Article  CAS  Google Scholar 

  15. Gumbsch P, Zhou SJ, Holian BL (1997) Phys Rev B 55:3445

    Article  CAS  Google Scholar 

  16. Gumbsch P (1999) Mat Sci Eng A 260:72

    Article  Google Scholar 

  17. Heino P, Häkkinen, Kaski K (1998) Phys Rev B 58:641

    Article  CAS  Google Scholar 

  18. Stampfl J, Kolednik O (2000) Int J Fracture 101:321

    Article  CAS  Google Scholar 

  19. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Phys Rev B 59:3393

    Article  CAS  Google Scholar 

  20. Nose S (1984) J Chem Phys 81:511

    Article  CAS  Google Scholar 

  21. Barber M, Donley J, Langer JS (1989) Phys Rev A 40:366

    Article  Google Scholar 

  22. Honeycutt JD, Andersen HC (1987) J Phys Chem 91:4950

    Article  CAS  Google Scholar 

  23. Clarke AS, Jonsson H (1993) Phys Rev E 47:3975

    Article  CAS  Google Scholar 

  24. Dahmen U, Hetherington JD, O’keefe MA, Westmacott KH, Mills MJ, Daw MS, Vitek V (1990) Philos Mag Lett 62:327

    Google Scholar 

  25. Tadmor EB, Hai S (2003) J Mech Phys Solids 51:765

    Article  CAS  Google Scholar 

  26. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Nat Mater 1:45

    Article  CAS  Google Scholar 

  27. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2003) Acta Mater 51:4135

    Article  CAS  Google Scholar 

  28. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2003) Philos Mag Lett 83:385

    CAS  Google Scholar 

  29. Parrinello M, Rahman A (1981) J Appl Phys 52:7182

    Article  CAS  Google Scholar 

  30. Yamakov V, Saether E, Phillips DR, Glaessgen EH (2006), J Mech Phys solids 54:1899

    Article  CAS  Google Scholar 

  31. Weertman J. Weertman JR (1992) Elementary dislocation theory. Oxford University Press, New York

    Google Scholar 

  32. Schiotz J, Vegge T, Di Tolla FD, Jacobsen KW (1999) Phys Rev B 60:11971

    Article  CAS  Google Scholar 

  33. Rice JR (1992) J Mech Phys Solids 40:239

    Google Scholar 

  34. Yamakov V, Saether E, Phillips DR, Glaessgen EH (2005) Phys Rev Lett 95:015502

    Article  CAS  Google Scholar 

  35. Abraham FF, Brodbeck D, Rafey RA, Rudge WE (1994) PhysRev Lett 73:272

    Article  Google Scholar 

  36. Abraham FF (2001) J Mech Phys Solids 49:2095

    Article  Google Scholar 

  37. Ching ESC (1994) Phys Rev E 49:3382

    Article  Google Scholar 

  38. Sharon E, Gross SP, Fineberg J (1996) Phys Rev Lett 76:2117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V. Yamakov and D. R. Phillips were sponsored through cooperative agreement NCC-1-02043 with the National Institute of Aerospace and contract NAS1-00135 with Lockheed Martin Space Operations, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yamakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamakov, V., Saether, E., Phillips, D.R. et al. Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation. J Mater Sci 42, 1466–1476 (2007). https://doi.org/10.1007/s10853-006-1176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1176-3

Keywords

Navigation