Skip to main content
Log in

Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Model-free isoconversion methods which use approximations of the temperature integral are generally reliable methods for the calculation of activation energies of thermally activated reactions studied during linear heating. These methods generally neglect the temperature integral at the start of the linear heating, I(T o ). An analytical equation is derived which describes the deviations introduced by this assumption. It is shown that for most reactions encountered this assumption does not have a significant influence on the accuracy of the method. However in cases where T o is within about 50 to 70 K of the reaction stage to be investigated and activation energies are relatively low, significant deviations are introduced. It is shown that some of the published thermal analysis work on activation energy analysis of reactions occurring at relatively low temperatures is affected by these deviations. Examples are specific cases of dehydration reactions, cure reactions and cluster formation in Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Starink MJ (2004) Int Mater Rev 49:191

    Article  CAS  Google Scholar 

  2. Galwey AK, Brown ME (1998) In: Brown ME (ed) Handbook of Thermal Analysis and Calorimetry, vol. 1, Elsevier, Amsterdam, p 147

  3. Liu F, Sommer F, Mittemeijer EJ (2004) J Mater Sci 39:1621

    Article  CAS  Google Scholar 

  4. Starink MJ, Zahra A-M (1998) Phil Mag A 77:187

    Google Scholar 

  5. Vyazovkin S (2000) Thermochim Acta 355:155

    Article  CAS  Google Scholar 

  6. Starink MJ, Zahra A-M (1997) Thermochim Acta 298:298

    Article  Google Scholar 

  7. Flynn JH (1997) Thermochim Acta 300:83

    Article  CAS  Google Scholar 

  8. Sewry JD, Brown ME (2002) Thermochim Acta 390:217

    Article  CAS  Google Scholar 

  9. Wanjun Tang, Donghua Chen (2005) Thermochim Acta 433:72

    Article  CAS  Google Scholar 

  10. Starink MJ (2003) Thermochim Acta 404:163

    Article  CAS  Google Scholar 

  11. Kissinger HE (1957) Analyt Chem 29:1702

    Article  CAS  Google Scholar 

  12. Ozawa T (1970) J Therm Anal 2:301

    Article  CAS  Google Scholar 

  13. Mittemeijer EJ (1992) J Mater Sci 27:3977

    Article  CAS  Google Scholar 

  14. Flynn JH, Wall LA J (1966) Polym Sci Part B 4:323

    Article  CAS  Google Scholar 

  15. Ozawa T (1992) Thermochim Acta 203:159

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Goriyachko VV (1992) Thermochim Acta 194:221

    Article  CAS  Google Scholar 

  17. Vyazovkin S, Lesnikovich AI (1988) Russ J Phys Chem 62:2949

    CAS  Google Scholar 

  18. Starink MJ (1996) Thermochim Acta 288:97

    Article  CAS  Google Scholar 

  19. Starink MJ (1997) J Mater Sci 32:6505

    Article  CAS  Google Scholar 

  20. Starink MJ, Sinclair I, Gao N, Kamp N, Gregson PJ, Pitcher P, Levers A, Gardiner S (2002) Mater Sci Forum 396–402:601

    Google Scholar 

  21. Starink MJ, Gao N, Yan JL (2004) Mater Sci Eng 387–389:222

    Google Scholar 

  22. Charai A, Walther T, Alfonso C, Zahra A-M, Zahra CY (2000) Acta Mater 48:2751

    Article  CAS  Google Scholar 

  23. Starink MJ, A-M Zahra (1997) J Mater Sci Lett 16:1613

    Article  CAS  Google Scholar 

  24. Abis S, Massazza M, Mengucci P, Riontino G (2001) Scr Mater 45:685

    Article  CAS  Google Scholar 

  25. Starink MJ, Gao N, Davin L, Yan J, Cerezo A (2005) Phil Mag 85:1395

    CAS  Google Scholar 

  26. Su Ting-Ting, Jiang Heng, Gong Hong (2005) Thermochim Acta 435:1

    Article  CAS  Google Scholar 

  27. Vecchio S, Di R Rocco, Ferragina C, Materazzi S (2005) Thermochim Acta 35:181

    Article  CAS  Google Scholar 

  28. Mondragon I, Solar L, Recalde IB, Gómez CM (2004) Thermochim Acta 417:19

    Article  CAS  Google Scholar 

  29. Zhou Tianle, Gu Mingyuan, Jin Yanping, Wang Junxiang (2005) Polymer 46:6216

    Article  CAS  Google Scholar 

  30. Guangbo He, Ning Yan (2005) Int J Adhesion Adhesives 25:450

    Google Scholar 

  31. Starink MJ, Zahra A-M (1998) Acta Mater 46:3381

    Article  CAS  Google Scholar 

  32. Starink MJ, A.-M. Zahra (1997) Phil Mag A 76:701

    CAS  Google Scholar 

  33. Slabanja M, Wahnström G (2005) Acta Mater 53:3721

    Article  CAS  Google Scholar 

  34. Starink MJ, Zahra A-M (1999) J. Mater Sci 34:1117

    Article  CAS  Google Scholar 

  35. Gao N, Davin L, Wang S, Cerezo A, Starink MJ (2002) Mater Sci Forum 396–402:923

    Article  Google Scholar 

  36. Hono K (2002) Prog Mater Sci 47:621

    Article  CAS  Google Scholar 

  37. Wang SC, Starink MJ (2004) Mater Sci Eng A 386:156

    Article  CAS  Google Scholar 

  38. Starink MJ, Dion A (2004) Thermochim Acta 417:5

    Article  CAS  Google Scholar 

  39. Wang SC, Starink MJ (2005) Int Mater Rev 50:193

    Article  CAS  Google Scholar 

  40. Wang SC, Starink MJ, Gao N (2006) Scr. Mater. 54: 287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Nong Gao is gratefully acknowledged for performing DSC experiments presented in Figure 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Starink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starink, M.J. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci 42, 483–489 (2007). https://doi.org/10.1007/s10853-006-1067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1067-7

Keywords

Navigation