Skip to main content
Log in

Deformed metals and alloys with a structural scale from 5 nm to 100 nm

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The processing, structure and properties of deformed metals and alloys with a structural scale from the micrometer to the nanometer dimensions has been the subject of a recent viewpoint set [1]. The present paper will focus on deformed metals and alloys with a structural scale from 5 nm to 100 nm, concentrating on materials processed by high pressure torsion (HPT), surface mechanical attrition treatment (SMAT) and sliding. A detailed microstructural characterization has been followed by an analysis of the relationship between structural features and processing parameters. In this analysis, some general approaches have been applied for example scaling of the evolution of the boundary spacing. This analysis is the basis for a brief discussion of the relationship between the microstructural parameters and the strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Script Mater 51 (2004) 751–841 (Viewpoint Set NO. 35. ‘Metals and alloys with a structural scale from the micrometer to the atomic dimension’, edited by N. Hansen)

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Richert M, Liu Q, Hansen N (1998) Mater Sci Eng 260A:275

    Google Scholar 

  4. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scripta Mater 39:1221

    Article  CAS  Google Scholar 

  5. Hughes DA, Hansen N (2001) Phys Rev Lett 87:135503

    Article  CAS  Google Scholar 

  6. Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Metall Trans 21A:2333

    CAS  Google Scholar 

  7. Umemoto M, Todaka Y, Tsuchiya K (2003) Mater Trans 44:1488

    Article  CAS  Google Scholar 

  8. Lu K, Lu J (1999) J Mater Sci Technol 15:193; Mater Sci Eng (2004) 375–377A:38

  9. Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Acta Mater 51:1871

    Article  CAS  Google Scholar 

  10. Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) Acta Mater 50:4063

    Article  Google Scholar 

  11. Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K (2002) Acta Mater 50:2075

    Article  CAS  Google Scholar 

  12. Zhu KY, Vassel A, Brisset F, Lu J, Lu K (2004) Acta Mater 52:4101

    Article  CAS  Google Scholar 

  13. Scripta Mater. 49 (2003) 625–680 (Viewpoint Set No. 31. ‘Mechanical properties of fully dense nanocrystalline metals’, edited by H. Van Swygenhoven and J.R. Weertman)

  14. Huang X, Vorhauer A, Winther G, Hansen N, Pippan R, Zehetbauer M (2004) In: Zhu YT, Langdon TG, Valiev RZ, Semiatin SL, Shin DH, Lowe TC (eds) Ultrafine grained materials III. TMS (The Minerals, Metals & Materials Society), p 235

  15. Huang X, Winther G, Hansen N, Hebesberger T, Vorhauer A, Pippan R, Zehetbauer M (2003) Mater Sci Forum 426–432:2819

  16. Winther G, Hansen N, Hebesberger T, Huang X, Pippan R, Zehetbauer M (2001) In: Dinesen AR, Eldrup M, Juul Jensen D, Linderoth S, Pedersen TB, Pryds NH, Schrøder Pedersen A, Wert JA (eds) Proceedings of the 22nd Risø international symposium on materials science: science of metastable and nanocrystalline alloys-structure, properties and modeling, Risø National Laboratory, Roskilde, Denmark, p 435

  17. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Landon TG (2001) Scripta Mater 44:2753

    Article  CAS  Google Scholar 

  18. Hughes DA, Dawson DB, Korellis JS, Weingarten LI (1995) Wear 181:458

    Google Scholar 

  19. Hansen N (2004) In: Gundlach C, Haldrup K, Hansen N, Huang X, Juul Jensen D, Leffers T, Li ZJ, Nielsen SF, Pantleon W, Wert JA, Winther G (eds) Proceedings of the 25th Risø international symposium on materials science: evolution of deformation microstructures in 3D. Risø National Laboratory, Roskilde, Denmark, p 13

  20. Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng 340A:265

    Google Scholar 

  21. Hughes DA, Hansen N (2004) ASM handbook 10th edn., vol 9: metallography and microstructures. ASM International, Metals Park, Ohio, p 192

  22. Kuhlmann-Wilsdorf D, Hansen N (1991) Scripta Metall Mater 25:1557

    Article  CAS  Google Scholar 

  23. Kuhlmann-Wilsdorf D (1989) Mater Sci Eng 113A:1

    Google Scholar 

  24. Kuhlmann-Wilsdorf D (1985) Phys Stat Sol 225:225

    Google Scholar 

  25. Liu Q, Hansen N (1995) Scripta Metall Mater 32:1289

    Article  CAS  Google Scholar 

  26. Hughes DA, Hansen N (2003) Phil Mag 83:3871

    Article  CAS  Google Scholar 

  27. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Acta Metall Mater 40:205

    Article  CAS  Google Scholar 

  28. Hansen N (2001) Metall Mater Trans 32A:2917

    CAS  Google Scholar 

  29. Zhilyaev AP, Kim B-K, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575

    Article  CAS  Google Scholar 

  30. Honeycombe RWK (1984) The plastic deformation of metals. Edward Arnold Ltd

  31. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Appl Phys Lett 83:5062

    Article  CAS  Google Scholar 

  32. Rösner H, Markmann J, Weissmüller J (2004) Phil Mag Lett 84:321

    Article  Google Scholar 

  33. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Science 300:1275

    Article  CAS  Google Scholar 

  34. Liao XZ, Huang JY, Zhu YT, Zhou F, Lavernia EJ (2003) Philos Mag 83:3065

    Article  CAS  Google Scholar 

  35. Asaro RJ, Krysl P, Kad B (2003) Philos Mag Lett 83:733

    Article  CAS  Google Scholar 

  36. Zhu YT, Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhou F, Lavernia EJ (2004) Appl Phys Lett 85:5049

    Article  CAS  Google Scholar 

  37. Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) J Appl Phys 98:034319

    Article  Google Scholar 

  38. Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Nature Mater 3:399

  39. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nature Mater 3:43

    Article  CAS  Google Scholar 

  40. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561

    Article  Google Scholar 

  41. Schiøtz J, Jacobsen KW (2003) Science 301:1357

    Article  Google Scholar 

  42. Hughes DA, Hansen N (2000) Acta Mater 48:2985

    Article  CAS  Google Scholar 

  43. Alberdi J (1984) Universidad de Navarra Facultad de Ciencias, San Sebastian, Grandes Deformaciones Plasticas en Frio en Policristales de Cobrey Aluminio (Torsion)

  44. Hu H (1969) In: Grewen J, Wassermann G (eds) Textures in research and practice. Springer-Verlag, Berlin, p 200

  45. Dinda GP, Rösner H, Wilde G (2005) Scripta Mater 52:577

    Article  CAS  Google Scholar 

  46. Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 50:3789

    Article  CAS  Google Scholar 

  47. Godfrey A, Hughes DA (2002) Mater Character 48:89

    Article  CAS  Google Scholar 

  48. Hughes DA, Chrzan DC, Liu Q, Hansen N (1998) Phys Rev Lett 81:4664

    Article  CAS  Google Scholar 

  49. Godfrey A, Hughes DA (2004) Scripta Mater 51:831

    Article  CAS  Google Scholar 

  50. Hansen N (2004) Scripta Mater 51:801

    Article  CAS  Google Scholar 

  51. Hansen N, Huang X, Ueji R, Tsuji N (2004) Mater Sci Eng 387–389A:191

  52. Hall EO (1951) Proc Phys Soc London 64B:747

    Google Scholar 

  53. Petch NJ (1953) J Iron Steel Inst 174:25

    CAS  Google Scholar 

  54. Thompson AAW (1975) Acta Metall 23:1337

    Article  CAS  Google Scholar 

  55. Li BL, Godfrey A, Meng QC, Liu Q, Hansen N (2004) Acta Mater 52:1069

    Article  CAS  Google Scholar 

  56. Dalla Torre F, Spätig P, Schäublin R, Victoria M (2005) Acta Mater 53:2337

    Article  CAS  Google Scholar 

  57. Wang YM, Wang K, Pan D, Lu K, Hemker KJ, Ma E (2003) Scripta Mater 48:1581

    Article  CAS  Google Scholar 

  58. Chen XH, Lu J, Lu L, Lu K (2005) Scripta Mater 52:1039

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Danish National Research Foundation for supporting the Center for Fundamental Research: Metal Structures in Four Dimensions, within which this work was performed. The authors also thank X. Huang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.W., Hansen, N. Deformed metals and alloys with a structural scale from 5 nm to 100 nm. J Mater Sci 42, 1682–1693 (2007). https://doi.org/10.1007/s10853-006-0974-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0974-y

Keywords

Navigation