Skip to main content
Log in

Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The experimental results on fatigue resistance of ultra-fine grain metals produced by severe plastic deformation (SPD) are reviewed with regard to two major characteristics of cyclic damage initiation and failure—fatigue limit and fatigue crack growth rate. The fatigue limit benefits considerably from grain refinement down to submicrocrystalline scale. Factors affecting the fatigue limit are discussed in the light of SPD-processing and resultant ultra-fine grain structure. Contrasting with the fatigue limit, the fatigue crack growth threshold deteriorates after SPD in comparison to that of ordinary polycrystals. Possible mechanisms of fatigue crack initiation and propagation are discussed and the guidelines for manufacturing are provided towards enhancement and optimization of fatigue performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:99

    Google Scholar 

  2. Segal VM (1995) Mater Sci Eng A197:157

    CAS  Google Scholar 

  3. Suresh S (1991) Fatigue of materials. Cambridge University Press

  4. Mughrabi H (2000) In: Lowe TC, Valiev RZ (eds) Investigations and applications of severe plastic deformation, vol 3/80. NATO Science Series, Kluwer Publishers, p 241

  5. Mughrabi H, Höppel HW, Kautz M (2004) Scripta Mater 51:807

    Article  CAS  Google Scholar 

  6. Vinogradov A, Agnew S (2004) In: Schwarz JA, Contescu C, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology marcel dekker. Inc., USA, 2269

  7. Höppel HW, Kautz M, Mughrabi H (2006) Proc. of 9th Int. Factigue Conference, Elsevier, FT207

  8. Höppel HW, Mughrabi H, Vinogradov A (in press) In: Zehetbauer M, Zhu YT (eds) Bulk nanostructured materials. Wiley-VCH, Germany

  9. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 45:103

    Article  CAS  Google Scholar 

  10. Valiev RZ (2002) Nature 419:887

    Article  CAS  Google Scholar 

  11. Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  12. Pelloux RM (1970) In: Burke JJ, Weiss V (eds) Ultrafine-grain metals. Syrakuse Univ. Press 231

  13. Tompson AW, Backofen WA (1971) Acta metall 19:597

    Article  Google Scholar 

  14. Lukáš P, Kunz L (1987) Mater Sci Eng 85:67

    Article  Google Scholar 

  15. Winter AT (1974) Phil Mag 31:411

    Google Scholar 

  16. Kolobov YuR, Kashin OA, Sagymbaev EE, Dudarev EF, Bushnev LS, Grabovetskaya GP, Pochivalova GP, Girsova NV, Stolyarov VV (2000) Izvestiya VUZov, Fizika, 1:77 (in Russian)

    Google Scholar 

  17. Vinogradov A, Stolyarov VV, Hashimoto S, Valiev RZ (2001) Mater Sci Eng A 318:163

    Article  Google Scholar 

  18. Mughrabi H, Wang R (1988) In: Lukáš P, Polák J (eds) Basic mechanisms in fatigue. Elsevier, Amsterdam, the Netherlands, p 1

  19. Liang FL, Laird C (1989) Mater Sci Eng A 117:95

    Article  Google Scholar 

  20. Plumtree A, Abdel-Raouf HA (2001) Int J Fatigue 23:177

    Article  Google Scholar 

  21. Kunz L, Lukáš P, Svoboda M (2006) Mater Sci Eng A 424:97

    Article  Google Scholar 

  22. Vinogradov A, Suzuki Y, Kopylov VI, Patlan V, Kitagawa K (2002) Acta metal 50:1636

    Google Scholar 

  23. Höppel HW, Mughrabi H (2001) Mat. Res. Soc. Symp. Proc. Vol. 634, Warrendale (PA): MRS, USA p. B 2.1.1

  24. Stolyarov VV, Alexandrov IV, Kolobov YuR, Zhu M, Zhu T, Lowe T (1999) In: Wu XR, Wang ZG (eds) Fatigue’99, Proc. of the 7th Int. Fatigue Congress, vol 3. Beijing, P.R.China; Higher Education Press, P.R.China, 1999, p 1345

  25. Turner NG, Roberts WT (1968) Trans AIME 242:1223

    CAS  Google Scholar 

  26. Gale WF, Totemeier TC (eds) (2004) Smitthells Metals Reference Book. Elsevier, Oxford, UK

  27. Vinogradov A, Kopylov VI, Hashimoto S (2003) Mater Sci Eng A 355:277

    Article  Google Scholar 

  28. Vinogradov A, Suzuki T, Hashimoto S, Kitagawa K, Kuznetsov A, Dobatkin S (2005) Mater Sci Forum 503–504:971

  29. Vinogradov A, Ishida T, Kitagawa K, Kopylov VI (2005) Acta Mater 53:2181

    Article  CAS  Google Scholar 

  30. Kitagawa K, Ishida T, Inoue A, Vinogradov A, Kopylov VI (2004) J JRICu 43:66 (in Japanese)

    Google Scholar 

  31. Lapovok R, Loader C, Dalla Torrea FH, Semiatin SL (2006) Mat Sci Eng A 425:36

    Article  Google Scholar 

  32. Feltner CE, Laird C (1967) Acta metal 15:1621

    Article  CAS  Google Scholar 

  33. Lukáš P, Kunz L (2002) Mater Sci Eng A 322:217

    Article  Google Scholar 

  34. Vinogradov A, Patlan V, Kitagawa K (1999) Mater Forum 607:312

  35. Vinogradov A, Hashimoto S (2001) Mat Trans JIM 42:74

    Article  CAS  Google Scholar 

  36. Segal VM (1999) Mater Sci Eng A 271:322

    Article  Google Scholar 

  37. Finney JM, Laird C (1975) Phil Mag 31:339

    CAS  Google Scholar 

  38. Laird C (1976) Mater Sci Eng 22:231

    Article  CAS  Google Scholar 

  39. Buchinger L, Laird C (1985) Mater Sci Eng 76:71

    Article  CAS  Google Scholar 

  40. Laird C, Buchinger L (1985) Metall Trans A 16A:2201

    CAS  Google Scholar 

  41. Ma B-T, Laird C (1989) Acta Metall 37:325

  42. Essmann U, Gossele U, Mughrabi H (1981) Phil Mag A 44:405

    CAS  Google Scholar 

  43. Agnew SR, Vinogradov AYu, Hashimoto S, Weertman JR (1999) J Electronic Mater 28:1038

  44. Höppel HW, Zhou ZM, Mughrabi H, Valiev RZ (2002) Phil Mag A 82:1781

    Article  Google Scholar 

  45. Wu SD, Wang ZG, Jiang CB, Li GY (2002) Phil Mag Lett 82:559

    Article  CAS  Google Scholar 

  46. Mughrabi H (1999) Fatigue Fract Eng Mater Struct 22:633

    Article  CAS  Google Scholar 

  47. Kolobov YuR, Valiev RZ (eds) (2001) Grain boundary diffusion and properties of nano-structured materials. Nauka, Novosibirsk

  48. Vinogradov A (2006) Mater Sci Forum 503–504:267

  49. Höppel HW (2006) Mater Sci Forum 503–504:259

  50. Yamasaki T, Miyamoto H, Mimaki T, Vinogradov A, Hashimoto S (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grain metals II. TMS, USA, p 361

  51. Yamasaki T (2002) Ph.D. Thesis, Doshisha University, p 81

  52. Higo Y, Pickard AC, Knott JF (1981) Metal Sci 15:233

    CAS  Google Scholar 

  53. Kiessling R, Hübner P, Biermann H, Vinogradov A (2006) Int J Mater Res 97:1566

    Google Scholar 

  54. Vinogradov A, Kitagawa K and Kopylov VI (2005) Mater Sci Forum 503–504:811

  55. Chung CS, Kim JK, Kim HK, Kim WJ (2002) Mater Sci Eng A 337:39

    Article  Google Scholar 

  56. Vinogradov A, Patlan V, Kitagawa K, Kawazoe M (1999) Nanostr Mater 11:925

    Article  CAS  Google Scholar 

  57. Kim H-K, Choi M-I, Chung C-S, Shin DE (2003) Mater Sci Eng A 340:243

    Google Scholar 

  58. Muranaka K, Otake Y, Kitagawa K, Vinogradov A, Kopylov V (2005) J JRICu 44:291 (in Japanese)

    Google Scholar 

  59. Taira S, Tanaka K, Hoshina M (1979) In: Fong JT (ed) Fatigue mechanisms. ASTM STP 675, USA, p 165

  60. Li X-D (1996) Theor Appl Fracture Mech 24:165

    Google Scholar 

  61. Lukáš P, Kunz L, Knesl Z, Weiss S, Stickler R (1985) Mater Sci Eng 70:91

    Article  Google Scholar 

  62. Lukáš P, Kunz L (2002) Mater Sci Eng A 322:217

    Article  Google Scholar 

  63. Huang HL, Ho NJ, Lin WB (2000) Mater Sci Eng A 279:261

    Article  Google Scholar 

  64. Lukas JP, Gerberich WW (1983) Fatigue Eng Mater Struct 6:271

    Google Scholar 

  65. Mughrabi H, Wang R (1988) In: Lukáš P, Polák J (eds) Basic mechanisms in fatigue, academia. Prague and Elsevier Science Publ. Co. 1

  66. Zhang J, Jiang Y (2006) Int J Plasticity 22:536

    Article  CAS  Google Scholar 

  67. Laird C (1967) In: Fatigue crack propagation. ASTM STP 415, ASTM, p 131

  68. Pelloux RM (1964) Trans Am Soc Metal 59:511

    Google Scholar 

  69. Weertman J (1966) Int J Fracture 2:460

    CAS  Google Scholar 

  70. Rice JR (1967) In: Fatigue Crack propagation. ASTM STP 415, ASTM, p 247

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vinogradov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, A. Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation. J Mater Sci 42, 1797–1808 (2007). https://doi.org/10.1007/s10853-006-0973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0973-z

Keywords

Navigation