Skip to main content
Log in

Plastic anisotropy in aluminum and copper pre-strained by equal channel angular extrusion

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical response of as-processed equal channel angular extrusion materials is anisotropic, depending on both direction and sense of straining. The stress–strain curves exhibit hardening characteristics different from the usual work hardening responses, e.g., Stages I–IV, expected in annealed fcc metals under monotonic loading. In this work, the anisotropic flow responses of two pure fcc metals, Al and Cu, processed by route Bc are evaluated and compared based on pre-strain level (number of passes), direction of reloading, sense of straining (i.e., compression versus tension), and their propensity to generate subgrain microstructures and to rearrange, should the slip activity change. In most cases, either macroscopic work softening or strain intervals with little to no work hardening are observed. Application of a crystallographically based single-crystal hardening law for strain-path changes [Beyerlein and Tomé, Int. J. Plasticity (2007)] incorporated into a visco-plastic self-consistent (VPSC) model supports the hypothesis that suppression of work hardening is due to reversal or cross effects operating at the grain level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The exponent n is set equal to 20 and \({\dot{\gamma}_0}\) is set equal to the macroscopic strain rate. As a consequence strain rate effects induced by n are removed. They can be introduced into the slip resistance, τ s c , if desired.

  2. The lower part in Fig. 9 consists of localized plastic deformation bounding a region of rigidly rotating material.

  3. For the die geometry (Fig. 1), processing conditions, and copper used in [8], the lower part applies to the bottom 10%–20% of the billet.

References

  1. Segal VM (1995) Mater Sci Eng A197:157

    Article  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Chinh NQ, Voros G, Szommer P, Horita Z, Langdon TG (2006) Mater Sci Forum 503–504:1001

    Google Scholar 

  4. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2001) Mater Sci Engng A 299:59

    Article  Google Scholar 

  5. Bengus VZ, Tabachnikova ED, Natsik VD, Mishkuf I, Chakh K, Stolyarov VV, Valiev RZ (2002) Low Temp Phys 28:864

    Article  CAS  Google Scholar 

  6. Horita Z, Fujinami T, Langdon TG (2001) Mater Sci Engng A 318:34–41

    Article  Google Scholar 

  7. Alexander DJ, Beyerlein IJ (2004) In: Zhu YT et al (eds) Ultrafine grained materials III. TMS, Warrendale, PA, pp 517–522

    Google Scholar 

  8. Alexander DJ, Beyerlein IJ (2005) I J Mater Sci Engng A 410–411:480–484

    Google Scholar 

  9. Haouaoui M, Karaman I, Maier HJ (2006) Acta Mater 54:5477

    Article  CAS  Google Scholar 

  10. Kocks UF, Mecking H (2003) Progr Mater Sci 48(3):171

    Article  CAS  Google Scholar 

  11. Li S, Beyerlein IJ, Necker CT, Alexander DJ, Bourke MAM (2003) Acta Mater 52:4859

    Article  CAS  Google Scholar 

  12. Beyerlein IJ, Li S, Necker CT, Alexander DJ, Tomé CN (2005) Phil Mag 85(13):1359

    CAS  Google Scholar 

  13. Miyamoto H, Erb U, Koyama T, Mimaki T, Vinogradov A, Hashimoto S (2004) Phil Mag Lett 84:235

    Article  CAS  Google Scholar 

  14. McNelley TR, Swisher DL (2004) In: Zhu YT et al (eds) Ultrafine grained materials III. TMS, Warrendale, PA, pp 89–94

    Google Scholar 

  15. Wu PC, Chang CP, Kao PW (2004) Mater Sci Engng A 374:196

    Article  CAS  Google Scholar 

  16. Huang X, Borrego A, Pantleon W (2001) Materials Science and Engineering A 319–321:237

    Article  Google Scholar 

  17. Dalla Torre FHD, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819

    Article  CAS  Google Scholar 

  18. Beyerlein IJ, Tomé CN (2007) Int J Plasticity (in press)

  19. Bauccio M (ed) (1993) ASM Metals Reference Book, 3rd ed., ASM International, Materials Park, OH, p 143

  20. Chinh NQ, Illy J, Kovacs Z, Horita Z, Langdon TG (2002) Mater Sci Forum 396–402:1007

    Google Scholar 

  21. Poortmans S, Verlinden B (2006) Mater Sci Forum 503–504:847

    Google Scholar 

  22. Dalla Torre FHD, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135

    Article  CAS  Google Scholar 

  23. Han SZ, Lim C, Kim C, Kim S (2005) Metall Mater Trans 36:467

    Google Scholar 

  24. Shih MH, Yu CY, Kao PW, Chang CP (2001) Scripta Mater 45:793

    Article  CAS  Google Scholar 

  25. Rauch EF (1992) Solid State Phenom 23/24:317

    Google Scholar 

  26. Stout MG, Rollett AD (1990) Metall Trans 21A:3201

    CAS  Google Scholar 

  27. Vincze G, Rauch EF, Gracio JJ, Barlat F, Lopes AB (2005) Acta Mater 53:1005

    Article  CAS  Google Scholar 

  28. Christodoulou N, Woo OT, MacEwen SR (1986) Acta Metall 34(8):1553

    Article  Google Scholar 

  29. Li S, Beyerlein IJ, Alexander DJ (2005) Scripta Mater 52:1099

    Article  CAS  Google Scholar 

  30. Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mater Res 14(10):4044

    CAS  Google Scholar 

  31. Beyerlein IJ, Toth LS, In: Zehetbauer, Zhu (eds) Texture evolution in ECAE, Bulk nanostructured materials, (2006) Wiley-VCH, Germany (In press)

  32. Davenport SB, Higginson RL, Sellars CM (1999) Philos Trans R Soc of Lon A 357:1645

    Article  CAS  Google Scholar 

  33. Yu CY, Sun PL, Kao PW, Chang CP (2005) Scripta Mater 52:359

    Article  CAS  Google Scholar 

  34. Langdon TG (2006) J Mater Sci 41(3):597

    Article  CAS  Google Scholar 

  35. Peeters B, Seefeldt M, Teodosiu C, Kalidindi SR, Van Houtte P, Aernoudt E (2001) Acta Mater 49:1607

    Article  CAS  Google Scholar 

  36. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Acta Metall Mater 40:205

    Article  CAS  Google Scholar 

  37. Teodosiu C (1996) RIKEN Rev Focus Comput Sci Engng 14:35

    Google Scholar 

  38. Cetlin PR, Corrêa ECS, Aguilar MTP (2003) Metall Mater Trans A 35:589

    Google Scholar 

  39. Mahesh S, Tomé CN, McCabe RJ, Kaschner GC, Beyerlein IJ, Misra A (2004) Metall Mater Trans A 35:3763

    Google Scholar 

  40. Beyerlein IJ, Tomé CN (2006) In: Zhu YT, Langdon TG, Horita Z, Zehetbauer MJ, Semiatin SL, Lowe TC (eds) Ultrafine grained materials IV. TMS, The Minerals, Metals & Materials Society, pp 63–71

  41. Hasegawa T, Yakou T, Karashima S (1976) Mater Sci Engng 20:267

    Google Scholar 

  42. Wilson DV, Zandrahimi M, Roberts WT (1990) Acta Metall Mater 38:215

    Article  CAS  Google Scholar 

  43. Han BQ, Lavernia EJ, Mohamed FA (2003) Metall Mater Trans 34A:71

    CAS  Google Scholar 

  44. Lebensohn RA, Tomé CN (1993) Acta Metall Mater 41:2611

    Article  CAS  Google Scholar 

  45. Tomé CN, Lebensohn RA (2004) In: Raabe D, Roters F, Barlat F, Chen LQ (eds) Continuum scale simulation of engineering materials: fundamentals, microstructures, process applications. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 473–499

    Chapter  Google Scholar 

  46. Kocks UF, Tomé CN, Wenk H-R (1998) Texture and anisotropy. Cambridge University Press

  47. Tomé CN, Canova GR, Kocks UF, Christodoulou N, Jonas JJ (1984) Acta Metall 32(10):1637

    Article  Google Scholar 

  48. Beyerlein IJ, Tomé CN (2006) Mater Sci Engng Technol 36(10):541

    Google Scholar 

  49. Xue Q, Beyerlein IJ, Alexander DJ (2006) Acta Mater (in press)

  50. Hosford WF (1993) The mechanics of crystals and textured polycrystals. Oxford Univ Press, New York, p 29

    Google Scholar 

  51. Phillips Jr WL (1962) Trans Metal Soc AIME 22:845

    Google Scholar 

  52. Phillips Jr WL, Robertson WD (1958) Trans Metal Soc AIME: 406–412

  53. Wu TY, Bassani JL, Laird C (1991) Proc Math Phys Sci 435:1

    Google Scholar 

  54. Madec R, Devincre B, Kubin LP (2002) Phys Rev Lett 89:255508-(1–4)

    Google Scholar 

  55. Wilson DV, Bate PS (1986) Acta Metall 34(6):1107

    Article  Google Scholar 

  56. Tomé CN, Lebensohn RA, Necker CT (2002) Metall Mater Trans A 33:2635

    Google Scholar 

  57. Li S, Beyerlein IJ, Alexander DJ, Vogel SC (2005) Acta Mater 53:2111

    CAS  Google Scholar 

  58. Vogel SC, Beyerlein IJ, Bourke MAM, Tome CN, Rangaswamy P, Xu C, Langdon TG (2002) Mater Sci Forum 408–412:673

    Google Scholar 

  59. Li S, Bourke MAM, Beyerlein IJ, Alexander DJ, Clausen B (2004) Mater Sci Engng A 382/1–2:217

    Article  CAS  Google Scholar 

  60. Budilov IN, Alexandrov IV, Lukaschuk YV, Beyerlein IJ, Zhernakov VS (2004) In: Zhu YT et al (eds) Ultrafine grained materials III. TMS, Warrendale PA, pp 193–198

    Google Scholar 

  61. Beyerlein IJ, Tomé CN (2004) Mater Sci Engng A 380:171

    Article  CAS  Google Scholar 

  62. Nazarov AA, Enikeev NA, Romanov AE, Orlova TS, Alexandrov IV, Beyerlein IJ, Valiev RZ (2006) Acta Mater 54:985

    Article  CAS  Google Scholar 

  63. Mahesh S, Beyerlein IJ, Tomé CN (2005) Scripta Mater 53:965

    Article  CAS  Google Scholar 

  64. Estrin Y, Toth LS, Brechet Y, Kim HS (2006) Mater Sci Forum 503–504:675

    Article  Google Scholar 

  65. Corrêa ECS, Aguilar MTP, Cetlin PR (2002) J Mater Process Technol 124:384

    Article  Google Scholar 

  66. Beyerlein IJ, Tomé CN (2007) Proceedings of THERMEC 2006, Materials Science Forum, vol.539–543, Trans Tech Publications, Vancouver, Canada, July 3–7, pp 3383–3388

Download references

Acknowledgements

Support by a Los Alamos Laboratory-Directed Research and Development project (No. 20030216) and Office of Basic Energy Sciences Project FWP 06SCPE401 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene J. Beyerlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyerlein, I.J., Alexander, D.J. & Tomé, C.N. Plastic anisotropy in aluminum and copper pre-strained by equal channel angular extrusion. J Mater Sci 42, 1733–1750 (2007). https://doi.org/10.1007/s10853-006-0906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0906-x

Keywords

Navigation