Skip to main content

Advertisement

Log in

Formation of monetite nanoparticles and nanofibers in reverse micelles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reverse micelles solution of water and cyclohexane containing either cetyltrimethylammonium bromide (CTAB) or polyoxyethylene-8-dodecyl ether (C12E8) surfactants and n-pentanol as co-surfactant have been used as organized reaction microenvironments for monetite (dicalcium phosphate anhydrous, DCPA) precipitation. Well-crystallized monetite nanoparticles with various morphologies such as spheres, nanofibers and bundles of nanowires were obtained in CTAB reverse micelles solution. The molar ratio of water and surfactant (W o) and the molar ratio of co-surfactant and surfactant (P o) have great influence on the structure and morphology of the final products. A generalized mechanism for the growth of monetite in reverse micelles is proposed, in which the interaction between the surfactant molecules and PO 3−4 ions leads to the formation of a surfactant/CaHPO4 complex. It is because of this central complex that the further fusion with reactant ions containing reverse micelles will occur only in one direction. Changing the content of water and co-surfactant has great influence on the morphology of reverse micelles and on the interaction between the surfactant/CaHPO4 complex leading to a fine tuning of the morphology of products. By contrast, lacking of this interaction in the C12E8 system only tablet amorphous calcium phosphate can be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Daudon M, Donsimoni R, Hennequin C, Fellahi S, Le MG, Paris M, Troupel S, Lacour B (1995) Urol Res 23:319

    Article  CAS  Google Scholar 

  2. Werness PG, Bergert JH, Smith LH (1982) J Cryst Growth 53:166

    Article  Google Scholar 

  3. DeGroot K (1983) Bioceramics of calcium phosphate. Florida CRC Press, Boca Raton

    Google Scholar 

  4. Williams DF, (1985) Biocompatibility of tissue analogs, vol 11. Florida CRC Press, Boca Ration

    Google Scholar 

  5. Shwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD (1999) Adv Dent Res 13:38

    Article  Google Scholar 

  6. Andrés-Vergés M, Fernández-Gpmzález C, MartÍnez-Gallego M (1998) J Euro Ceram Soc 18:1245

    Article  Google Scholar 

  7. Huang LM, Wang HT, Wang ZB, Mitra AP, Zhao DY, Yan YS (2002) Chem Mater 14:876

    Article  CAS  Google Scholar 

  8. Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Appl Phys Lett 79:1039

    Article  CAS  Google Scholar 

  9. Duan X, Lieber XM (2000) Adv Mater 12:298

    Article  CAS  Google Scholar 

  10. Jana NR, Gearheart L, Murphy CJ (2001) Adv Mater 13:1389

    Article  CAS  Google Scholar 

  11. Sui XM, Chu Y, Xing SX, Yu M, Liu CZ (2004) Mater Lett 58:1255

    Article  CAS  Google Scholar 

  12. Hirai T, Asada Y, Komasawa I (2004) J Colloid Interf Sci 276:339

    Article  CAS  Google Scholar 

  13. Uskokovic V, Drofenik M, Ban I (2004) J Magn Magn Mater 284:294

    Article  CAS  Google Scholar 

  14. Liu Y, Zhang Z (2002) In: Wang ZL (ed) Handbook of nanophase and nanostructured materials-synthesis. Tsinghua University Press, Bei Jing, p 9

  15. Pileni MP (1993) J Phys Chem 97:6961

    Article  CAS  Google Scholar 

  16. Clark S, Fletcher PDI, Ye X (1990) Langmuir 6:301

    Article  Google Scholar 

  17. Senger B, Brès EF, Hutchison JL, Voegel JC, Frank RM (1992) Philos Mag A 65:665

    Article  CAS  Google Scholar 

  18. Y Li, Li YD, Deng ZX, Zhuang J, Sun XM (2001) Inter J Inorg Mater 3:633

    Article  Google Scholar 

  19. Faeder J, Ladanyi BM (2000) J Phys Chem B 104:1033

    Article  CAS  Google Scholar 

  20. Törnblom M, Henriksson U (1997) J Phys Chem B 101:6028

    Article  Google Scholar 

  21. Hopwood JD, Mann S (1997) Chem Mater 9:1819

    Article  CAS  Google Scholar 

  22. Li M, Mann S (2000) Langmuir 16:7088

    Article  CAS  Google Scholar 

  23. Jinawath S., Polchai D., Yoshimura M (2002) Mater Sci Eng C 22:35

    Article  Google Scholar 

  24. Braun PV, Stupp SI (1999) Mater Res Bull 34:463

    Article  CAS  Google Scholar 

  25. Curri ML, Agostinao A, Manna L, Monica MD, Catalano M, Chiavarone L, Spangnolo V, Lugará M (2000) J Phys Chem B 104:8391

    Article  CAS  Google Scholar 

  26. Palazzo G, Lopez F, Giustini M, Colafemmina G, Ceglie A (2003) J Phys Chem B 107:1924

    Article  CAS  Google Scholar 

  27. Sarda S, Heughebaert M, Lebugle A (1999) Chem Mater 11:2722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports for this study from National Natural Science Foundation of China (NSFC) Project Grant (50272021, 59932050, and 50472054), Natural Science Foundation Cooperative Project Grant of Guangdong (04205786). We also thank Dr. B. Léon for her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, K., Lai, C. & Wang, Y. Formation of monetite nanoparticles and nanofibers in reverse micelles. J Mater Sci 42, 5340–5346 (2007). https://doi.org/10.1007/s10853-006-0902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0902-1

Keywords

Navigation