Skip to main content
Log in

The transition of rodlike micelles to wormlike micelles of an ionic liquid surfactant induced by different additives and the template-directed synthesis of calcium oxalate monohydrate to mimic the formation of urinary stones

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The viscoelastic wormlike micelles composed of the ionic liquid surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C16imC8]Br), and the β-cyclodextrin (β-CD) were utilized to mimic the formation of lithangiuria, that is the calcium oxalate monohydrate (COM). The influence of different additives, such as CaCl2 and Na2C2O4 (precursors for the synthesis of COM) and the β-CD on the viscoelasticity of the [C16imC8]Br solution, was studied by the rheology. The [C16imC8]Br rod-like micelles transit to the wormlike micelles induced by different additives. The [C16imC8]Br/β-CD wormlike micelles containing the [C16imC8]Br/β-CD inclusion complexes were characterized by the small angle X-ray scattering, surface tension measurements, zeta potential measurements, and cryo-TEM. The COM particles were synthesized in the [C16imC8]Br/β-CD wormlike micelles which were characterized by the transmission electron microscopy and X-ray diffraction. The β-CD has important influence on the formation of COM. In the end, the mechanism of the synthesis of COM in the [C16imC8]Br/β-CD wormlike micelles is proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Benramdane L, Bouatia M, Idrissi MOB, Draoui M (2008) Infrared analysis of urinary stones, using a single reflection accessory and a KBr pellet transmission. Spectrosc Lett 41:72–80. https://doi.org/10.1080/00387010801943806

    Article  CAS  Google Scholar 

  2. Poloni LN, Ward MD (2014) The materials science of pathological crystals. Chem. Mater 26:477–495. https://doi.org/10.1021/cm402552v.

  3. Farmanesh S, Chung J, Chandra D, Sosa RD, Karande P, Rimer JD (2013) High-throughput platform for design and screening of peptides as inhibitors of calcium oxalate monohydrate crystallization. J Cryst Growth 373:13–19. https://doi.org/10.1016/j.jcrysgro.2012.09.018

    Article  CAS  Google Scholar 

  4. Poon NW, Gohel MDI (2012) Urinary glycosaminoglycans and glycoproteins in a calcium oxalate crystallization system. Carbohydr Res 347:64–68. https://doi.org/10.1016/j.carres.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  5. Farmanesh S, Chung JH, Sosa RD, Kwak JH, Karande P, Rimer JD (2014) Natural promoters of calcium oxalate monohydrate crystallization. J. Am. Chem. Soc 136:12648–12657.https://doi.org/10.1021/ja505402r.

  6. Sheng XX, Ward MD, Wesson JA (2003) Adhesion between molecules and calcium oxalate crystals: critical interactions in kidney stone formation. J. Am. Chem. Soc 125:2854–2855. https://doi.org/10.1021/ja029575h.

  7. Ouyang JM, Deng SP (2003) Controlled and uncontrolled crystallization of calcium oxalate monohydrate in the presence of citric acid. Dalton Trans 14:2846–2851. https://doi.org/10.1039/b304319c

    Article  CAS  Google Scholar 

  8. Brown CM, Novin F, Purich DL (1994) Calcium oxalate crystal morphology: influence of phospholipid micelles with compositions based on each leaflet of the erythrocyte membrane. J Cryst Growth 135:523–532. https://doi.org/10.1016/0022-0248(94)90143-0

    Article  CAS  Google Scholar 

  9. Ouyang JM, Duan L, He JH, Tieke B (2003) Crystallization of calcium oxalate in liposome solutions of different carboxylates. Chem Lett 32:268–269. https://doi.org/10.1246/cl.2003.268

    Article  CAS  Google Scholar 

  10. Ouyang JM, Duan L, Tieke B (2014) Effects of carboxylic acids on the crystal growth of calcium oxalate nanoparticles in lecithin-water liposome systems. Langmuir 19:8980–8985. https://doi.org/10.1021/la0208777

    Article  CAS  Google Scholar 

  11. Petrova RI, Swift JA (2002) Habit changes of sodium bromate crystals grown from gel media. Cryst Growth Des 2:573–578. https://doi.org/10.1021/cg025548r

    Article  CAS  Google Scholar 

  12. Zhang YM, Zhang ZD, Liu XF (2020) pH-responsive viscoelastic fluid formed by cleavable sodium hexadecyl phthalate monoester alone. J Mol Liq 313:113514. https://doi.org/10.1016/j.molliq.2020.113514

    Article  CAS  Google Scholar 

  13. Kwiatkowski AL, Molchanov VS, Kuklin AI, Philippov OE (2020) Opposite effect of salt on branched wormlike surfactant micelles with and without embedded polymer. J Mol Liq 311:113301. https://doi.org/10.1016/j.molliq.2020.113301

    Article  CAS  Google Scholar 

  14. Yan ZH, Qian F, Sun HN, Lu X, Li Y, Lv HB, Dai CL, Jiao ML (2020) Studies on the synthesis, surface activity and the ability to form pH-regulated wormlike micelles with surfactant containing carboxyl group. J Mol Liq 309:113182. https://doi.org/10.1016/j.molliq.2020.113182

    Article  CAS  Google Scholar 

  15. Cui WX, Yan J, Yang J, Wang Y, Wang XX (2020) Effect of hydrocarbon structure on viscosity reduction of long chain viscoelastic surfactant. J. Mol. Liq. 311:113197. https://doi.org/10.1016/j.molliq.2020.113197.

  16. Hu YM, Han J, Guo R (2020) Wormlike micelle to gel transition induced by Brij 30 in ionic liquid-type surfactant aqueous solution. Wu Li Hua Xue Xue Bao 36:1909049.https://doi.org/10.3866/PKU.WHXB201909049.

  17. Hu YM, Han J, Ge LL, Guo R (2015) Impact of alkyl chain length on the transition of hexagonal liquid crystal-wormlike micelle-gel in ionic liquid-type surfactant aqueous solutions without any additive. Langmuir 31:12618–12627. https://doi.org/10.1021/acs.langmuir.5b03382

    Article  CAS  PubMed  Google Scholar 

  18. Hu YM, Han J, Guo R (2020) The influence of the alkyl chain length of the imidazole ionic liquid type surfactants on their aggregation behavior with sodium dodecyl sulfate. Langmuir 36:10494–10503. https://doi.org/10.1021/acs.langmuir.0c01673

    Article  CAS  PubMed  Google Scholar 

  19. Taddese T, Anderson RL, Bray DJ, Warren PB (2020) Recent advances in particlebased simulation of surfactants. Curr Opin Colloid Interface Sci 48:137–148. https://doi.org/10.1016/j.cocis.2020.04.001

    Article  CAS  Google Scholar 

  20. Kuddushi M, Mata J, Malek N (2020) Self-sustainable, self-healable, load bearable and moldable stimuli responsive ionogel for the selective removal of anionic dyes from aqueous medium. J Mol Liq 298:112048. https://doi.org/10.1016/j.molliq.2019.112048

    Article  CAS  Google Scholar 

  21. Hu YM, Han J, Ge LL, Guo R (2018) Viscoelastic wormlike micelles formed by ionic liquid-type surfactant [C16imC8]Br towards template-assisted synthesis of CdS quantum dots. Soft Matter 14:789–796. https://doi.org/10.1039/c7sm02223a.

  22. Gupta VKN, Mehra A, Thaokar R (2012) Worm-like micelles as templates: formation of anisotropic silver halide nanoparticles. Colloids Surf A 393:73–80. https://doi.org/10.1016/j.colsurfa.2011.11.003

    Article  CAS  Google Scholar 

  23. Grohe B, Young JO, Ionescu DA, Rogers LG, KA, Karttunen M, Goldberg HA, Hunte GK, (2007) Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951. https://doi.org/10.1021/ja0745613

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Jiang M (2006) Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J Am Chem Soc 128:3703–3708. https://doi.org/10.1021/ja056775v

    Article  CAS  PubMed  Google Scholar 

  25. Gao YA, Zhao XY, Dong B, Zheng LQ, Li N, Zhang SH (2006) Inclusion complexes of β-cyclodextrin with ionic liquid surfactants. J Phys Chem B 110:8576–8581. https://doi.org/10.1021/jp057478f

    Article  CAS  PubMed  Google Scholar 

  26. Tao W, Liu Y, Jiang BB, Yu SR, Huang W, Zhou YF, Yan DY (2012) A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility. J Am Chem Soc 134:762–764. https://doi.org/10.1021/ja207924w

    Article  CAS  PubMed  Google Scholar 

  27. Sun T, Yan H, Liu GC, Hao JC, Su J, Li SY, Xing PY, Hao AY (2012) Strategy of directly employing paclitaxel to construct vesicles. J Phys Chem B 116:14628–14636. https://doi.org/10.1021/jp310261j

    Article  CAS  PubMed  Google Scholar 

  28. Jiang LX, Yan Y, Huang JB (2011) Zwitterionic surfactant/cyclodextrin hydrogel: microtubes and multiple responses. Soft Matter 7:10417–10423. https://doi.org/10.1039/c1sm06100c

    Article  CAS  Google Scholar 

  29. Xu HN, Ma SF, Chen W (2012) Unique role of β-cyclodextrin in modifying aggregation of Triton X-114 in aqueous solutions. Soft Matter 8:3856–3863. https://doi.org/10.1039/C2SM07371D

    Article  CAS  Google Scholar 

  30. Jiang LX, Peng Y, Yan Y, Huang JB (2011) Aqueous self-assembly of SDS@2b-CD complexes: lamellae and vesicles. Soft Matter 7:1726–1731. https://doi.org/10.1039/c0sm00917b

    Article  CAS  Google Scholar 

  31. Jing B, Chen X, Wang XD, Yang CJ, Xie YZ, Qiu HY (2007) Self-assembly vesicles made from a cyclodextrin supramolecular complex. Chem Eur J 13:9137–9142. https://doi.org/10.1002/chem.200700729

    Article  CAS  PubMed  Google Scholar 

  32. Zhou CC, Cheng XH, Zhao Q, Yan Y, Wang JD, Huang JB (2013) Self-assembly of nonionic surfactant Tween 20@2β-CD inclusion complexes in dilute solution. Langmuir 29:13175–13182. https://doi.org/10.1021/la403257v

    Article  CAS  PubMed  Google Scholar 

  33. Jiang LX, Peng Y, Yan Y, Deng ML, Wang YL, Huang JB (2010) “Annular ring” microtubes formed by SDS@2β-CD complexes in aqueous solution. Soft Matter 6:1731–1736. https://doi.org/10.1039/B920608F

    Article  CAS  Google Scholar 

  34. Park C, Lee IH, Lee S, Song Y, Rhue M, Kim C (2006) Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proc Natl Acad Sci U S A 103:1199–1203. https://doi.org/10.1073/pnas.0505364103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogoshi T, Takashima Y, Yamaguchi H, Harada A (2007) Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins. J Am Chem Soc 129:4878–4879. https://doi.org/10.1021/ja070457+

    Article  CAS  PubMed  Google Scholar 

  36. Deng W, Yamaguchi H, Takashima Y, Harada A (2010) Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins. Chem Asian J 3:687–695. https://doi.org/10.1002/asia.200700378

    Article  CAS  Google Scholar 

  37. Peng K, Tomatsu I, Kros A(2010) Light controlled protein release from a supramolecular hydrogel. Chem. Commun 46:4094–4096. https://doi.org/10.1039/c002565h.

  38. Park JS, Jeong S, Chang DW, Kim JP, Kim K, Park EK, Song KW (2011) Lithium-induced supramolecular hydrogel. Chem Commun 47:4736–4738. https://doi.org/10.1039/C1CC10532A

    Article  CAS  Google Scholar 

  39. He YF, Shen XH (2008) Interaction between beta-Cyclodextrin and ionic liquids in aqueous solution investigated by a competitive method using a substituted 3H-indole probe. J Photochem Photobiol A 197:253–259. https://doi.org/10.1016/j.jphotochem.2008.01.001

    Article  CAS  Google Scholar 

  40. He YF, Chen QD, Xu C, Zhang JJ, Shen XH (2009) Interaction between ionic liquids and β-cyclodextrin: a discussion of association pattern. J Phys Chem B 113:231. https://doi.org/10.1021/jp808540m

    Article  CAS  PubMed  Google Scholar 

  41. Zhang JJ, Shen XH (2011) Multiple equilibria interaction pattern between the ionic liquids CnmimPF6 and β-Cyclodextrin in aqueous solutions. J. Phys. Chem. B 115:11852.https://doi.org/10.1021/jp206418m.

  42. Zhang JJ, Shi JF, Shen XH (2014) Further understanding of the multiple equilibria interaction pattern between ionic liquid and β-cyclodextrin. J Incl Phenom Macrocycl Chem 79:319–327. https://doi.org/10.1007/s10847-013-0354-6

    Article  CAS  Google Scholar 

  43. Qiao Y, Lin YY, Wang YJ, Li ZB, Huang JB (2011) Metal-driven viscoelastic wormlike micelle in anionic/zwitterionic surfactant systems and template-directed synthesis of dendritic silver nanostructures. Langmuir 27:1718–1723. https://doi.org/10.1021/la104447d

    Article  CAS  PubMed  Google Scholar 

  44. Sharma SC, Shrestha RG. Shrestha LK, Aramaki K (2009) Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils. J. Phys. Chem. B 113:1615–1622. https://doi.org/10.1021/jp808390c.

  45. Fan H, Li B, Yan Y, Huang JB (2010) General rules for the scaling behavior of linear wormlike micelles formed in catanionic surfactant systems. J Colloid Interface Sci 348:491–497. https://doi.org/10.1016/j.jcis.2010.04.065

    Article  CAS  PubMed  Google Scholar 

  46. Zhao L, Wang K, Xu L, Liu Y, Zhang S, Li Z, Yan Y, Huang JB (2012) Extremely pH-sensitive fluids based on a rationally designed simple amphiphile. Soft Matter 8:9079–9085. https://doi.org/10.1039/c2sm25334h

    Article  CAS  Google Scholar 

  47. Fan H, Li B, Yan Y, Huang JB, Kang W (2014) Phase behavior and microstructures in a mixture of anionic Gemini and cationic surfactants. Soft Matter 10:4506–4512. https://doi.org/10.1039/C4SM00098F

    Article  CAS  PubMed  Google Scholar 

  48. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753. https://doi.org/10.1021/cr970022c

    Article  CAS  PubMed  Google Scholar 

  49. Banjare MK, Behera K, Satnami ML, Pandeyc S, Ghosh KK (2018) Host–guest complexation of ionic liquid with a- and b-cyclodextrins: a comparative study by 1H-NMR, 13C-NMR and COSY. New J Chem 42:14542–14550. https://doi.org/10.1039/C8NJ01840E

    Article  CAS  Google Scholar 

  50. Zhang JJ, Shen XH (2013) Temperature-induced reversible transition between vesicle and supramolecular hydrogel in the aqueous ionic liquid-β-cyclodextrin system. J Phys Chem B 117:1451–1457. https://doi.org/10.1021/jp308877w

    Article  CAS  PubMed  Google Scholar 

  51. Zhu B, Jia LH, Guo XF, Yin JX, Zhao ZL, Chen NN, Chen SX, Jia Y (2019) Controllable assembly of a novel cationic Gemini surfactant containing a naphthalene and amide spacer with β-cyclodextrin. Soft Matter 15:3198–3207. https://doi.org/10.1039/C9SM00172G

    Article  CAS  PubMed  Google Scholar 

  52. Pedersen JS, Schurtenberger P (1996) Scattering functions of semiflexible polymers with and without excluded volume effects. Macromolecules 29:7602–7612. https://doi.org/10.1021/ma9607630

    Article  CAS  Google Scholar 

  53. Agrawal NR, Yue X, Feng YJ, Raghavan SR (2019) Wormlike micelles of a cationic surfactant in polar organic solvents: extending surfactant self-assembly to new systems and subzero temperatures. Langmuir 35:12782–12791.https://doi.org/10.1021/acs.langmuir.9b02125.

  54. Hu YM, Ge LL, Han J, Guo R (2015) Concentration and temperature induced dual-responsive wormlike micelle to hydrogel transition in ionic liquid-type surfactant [C16imC9]Br aqueous solution without additives. Soft Matter 11:5624–5631. https://doi.org/10.1039/c5sm01084e

    Article  CAS  PubMed  Google Scholar 

  55. Lee HJ, Kim HJ, Park DG, Jin KS, Chang JW, Lee HY (2020) Mechanism for transition of reverse cylindrical micelles to spherical micelles induced by diverse alcohols. Langmuir 36:8174–8183. https://doi.org/10.1021/acs.langmuir.0c01246

    Article  CAS  PubMed  Google Scholar 

  56. Georgieva GS, Anachkov SE, Lieberwirth I, Koynov K, Kralchevsky PA (2016) Synergistic growth of giant wormlike micelles in ternary mixed surfactant solutions: effect of octanoic acid. Langmuir 32:12885–12893. https://doi.org/10.1021/acs.langmuir.6b03955

    Article  CAS  PubMed  Google Scholar 

  57. Chhatre A, Duttagupta S, Rochish T, Mehra A (2015) Mechanism of nanorod formation by wormlike micelle-assisted assembly of nanospheres. Langmuir 31:10524–10531. https://doi.org/10.1021/acs.langmuir.5b02086

    Article  CAS  PubMed  Google Scholar 

  58. Rincon-London N, Tavera-Vazquez A, Cristina Garza, Esturau-Escofet N, Kozina A, Castillo R (2019) Structural changes in wormlike micelles on the incorporation of small photoswitchable molecules. J. Phys. Chem. B 123:9481–9490.

  59. Bouropoulos N, Weiner S, Addadi L (2001) Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chem Eur J 7:1881–1888. https://doi.org/10.1002/1521-3765(20010504)7:9%3c1881::aid-chem1881%3e3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  60. Farmanesh S, Ramamoorthy S, Chung JH, Asplin JR, Karande P, Rime JD (2014) Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem Soc 136:367–376. https://doi.org/10.1021/ja410623q

    Article  CAS  PubMed  Google Scholar 

  61. Chen LY, Deng ZX, Zhong CL, Zhou YH, Bai Y (2016) Modulation of calcium oxalate crystallization by colloidal selenium nanoparticles-polyphenol complex. Cryst Growth Des 16:2581–2589. https://doi.org/10.1021/acs.cgd.5b01647

    Article  CAS  Google Scholar 

  62. Lam CK, Mak TCW (2003) Carbonate and oxalate dianions as prolific hydrogen-bond acceptors in supramolecular assembly. Chem Commun 21:2660–2661. https://doi.org/10.1039/B306649E

    Article  Google Scholar 

  63. Mohanty R, Bhandarkar S, Estin J (1990) Kinetics of nucleation from aqueous solution. Am Inst Chem Eng J 36:1536–1544. https://doi.org/10.1002/aic.690361009

    Article  CAS  Google Scholar 

  64. Bunker BC, Rieke PC, Tarasevich BJ, Campbell AA, Fryxell GE, Graff GL, Song L, Liu J, Virden JW (1994) Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 264:48–55. https://doi.org/10.1126/science.264.5155.48

    Article  CAS  PubMed  Google Scholar 

  65. Gebauer D, Wolf SE (2019) Designing solid materials from their solute state: a shift in paradigms toward a holistic approach in functional materials chemistry. J Am Chem Soc 141:4490–4504. https://doi.org/10.1021/jacs.8b13231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the technical support received at the Testing Center of Yangzhou University.

Funding

This work was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chen, Y., Cai, Z. et al. The transition of rodlike micelles to wormlike micelles of an ionic liquid surfactant induced by different additives and the template-directed synthesis of calcium oxalate monohydrate to mimic the formation of urinary stones. Colloid Polym Sci 299, 1991–2002 (2021). https://doi.org/10.1007/s00396-021-04919-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04919-1

Keywords

Navigation