Skip to main content
Log in

Grain size dependence of tensile behavior in nanocrystalline Ni–Fe alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile behaviors of FCC Ni–Fe alloys were investigated within three grain size regimes: >100 nm, 15–100 nm, and <15 nm. The results show that the nanocrystalline metals demonstrated large strain hardening rates, which increase with decreasing the grain size. With the similar grain size, lowing the stacking-fault energy (SFE) by addition of alloying element increases the yield strength and strain hardening ability. The “low” tensile elongation of nanocrystalline metals is due to the basic tradeoff between the strength and tensile elongation, i.e. nanostructured metals are not inherently brittle. Both the tensile results and fracture surface observations suggest that the tensile ductility increases with increasing the grain size. Furthermore, within the large grain size regime, the fracture surface exhibited the real void structure; while the fracture surface showed the concave and convex features when the grain size is less than the critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  2. Embury JD, Hirth JP (1994) Acta Metall Mater 42:2051

    Article  Google Scholar 

  3. Dieter GE (1986) Mechanical metallurgy. McGraw-Hill, New York, p 168

  4. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nat Mater 3:43

    Article  CAS  Google Scholar 

  5. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561

    Article  Google Scholar 

  6. Van Swygenhoven H (2002) Science 296:66

    Article  Google Scholar 

  7. Schiøtz J, Jacobsen KW (2003) Science 301:1357

    Article  Google Scholar 

  8. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2003) Phil Mag Lett 83:385

    CAS  Google Scholar 

  9. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636

    Article  CAS  Google Scholar 

  10. Nieh TG, Wadsworth J (1991) Scripta Met Mater 25:955

    Article  CAS  Google Scholar 

  11. Cheung C, Palumbo G, Erb U (1994) Scripta Met Mater 31:735

    Article  CAS  Google Scholar 

  12. Li H, Ebrahimi F (2003) Mater Sci Eng A 347:93

    Article  Google Scholar 

  13. Wang N, Wang Z, Aust KT, Erb U (1997) Mater Sci Eng A 237:150

    Article  Google Scholar 

  14. Ebrahimi F, Bourne GR, Kelly MS, Matthews TE (1999) NanoStruct Mater 11:343

    Article  CAS  Google Scholar 

  15. Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ (2000) Philos Mag A 80:1017

    Article  CAS  Google Scholar 

  16. Matlock DK, Zia-Ebrahimi F, Krauss G (1984) In: Krauss G (ed) Deformation, processing and structure. ASM Publication, Metals Park, Ohio, p. 47

  17. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    CAS  Google Scholar 

  18. McCrea JL, Palumbo G, Hibbard GD, Erb U (2003) Rev Adv Mater Sci 5:252

    CAS  Google Scholar 

  19. Zhang K, Weertman JR, Eastman JA (2005) Appl Phys Lett 87:061921

    Article  Google Scholar 

  20. Yip S (2004) Nature Mater 3:11

    Article  CAS  Google Scholar 

  21. Budrovic Z, Van Swygenhoven H, Derlet PM, Van Petegem S, Schmitt B (2004) Science 304:273

    Article  CAS  Google Scholar 

  22. Ebrahimi F, Ahmed Z, Morgan KL (2001) MRS Symp Proc 634:B2.7.1

    Google Scholar 

  23. Mitra R, Ungar T, Morita T, Sanders PG, Weertman JR (1999) In: Chung Y-W, Dund DC, Liaw PK, Olsen GB (eds) The 1999 J.R. Weertman Symposium. TMS, Warrendale, PA, p 553

  24. Hasnaoui A, Van Swygenhoven H, Derlet PM (2003) Science 300:1550

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) under the grant # DMR-9980213 at Materials Science and Engineering Department of the University of Florida and DMR-0231320 at Materials Science and Engineering Department of the University of Tennessee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Ebrahimi, F., Choo, H. et al. Grain size dependence of tensile behavior in nanocrystalline Ni–Fe alloys. J Mater Sci 41, 7636–7642 (2006). https://doi.org/10.1007/s10853-006-0856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0856-3

Keywords

Navigation