Skip to main content

Advertisement

Log in

Tensile properties of elephant grass fiber reinforced polyester composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Elephant grass stalk fibers were extracted using retting and chemical (NaOH) extraction processes. These fibers were treated with KMnO4 solution to improve adhesion with matrix. The resulting fibers were incorporated in a polyester matrix and the tensile properties of fiber and composite were determined. The fibers extracted by retting process have a tensile strength of 185 MPa, modulus of 7.4 GPa and an effective density of 817.53 kg/m3. The tensile strength and modulus of chemically extracted elephant grass fibers have increased by 58 and 41%, respectively. After the treatment the tensile strength and modulus of the fiber extracted by retting have decreased by 19, 12% and those of chemically extracted fiber have decreased by 19 and 16%, respectively. The composites were formulated up to a maximum of 31% volume of fiber resulting in a tensile strength of 80.55 MPa and tensile modulus of 1.52 GPa for elephant grass fibers extracted by retting. The tensile strength and the modulus of chemically extracted elephant grass fiber composites have increased by approximately 1.45 times to those of elephant grass fiber composite extracted by retting. The tensile strength of treated fiber composites has decreased and the tensile modulus has shown a mixed trend for the fibers extracted by both the processes. Quantitative results from this study will be useful for further and more accurate design of elephant grass fiber reinforced composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang GC, Zeng HM, Li JJ, Jian NB, Zhang WB (1996) Acta Sci Naturalium Univ Sunyat 35:53

    CAS  Google Scholar 

  2. Ei-Naggar AM, Ei-Hosamy MB, Zahran AH, Zondy MH (1992) Am Dyestuff Rep 81:40

    Google Scholar 

  3. Sabaa MW (1991) Polym Degradation St 32:209

    Article  CAS  Google Scholar 

  4. Mishra S, Naik JB, Patil YP (2000) Com Sci Tech 60:1729

    Article  CAS  Google Scholar 

  5. Stamboulis A, Baillie CA, Peijs T (2001) Composites: Part A 32:1105

    Article  Google Scholar 

  6. Li Y, Mai Y-W, Lin Y (2000) Com Sci Tech 60:2037

    Article  CAS  Google Scholar 

  7. Mukherjee PS, Satyanarayana KG (1984) J Mater Sci 19:3925

    Article  CAS  Google Scholar 

  8. Amada S, Untao S (2001) Composites: Part B 32:451

    Article  Google Scholar 

  9. Amada S, Munekata T, Nagase Y, Ichikawa Y, Shimizu H (1997) Composites: Part B. 28:13

    Article  Google Scholar 

  10. Ismail H, Edyham MR, Wirjosentono B (2002) J Polym Test 21:139

    Article  CAS  Google Scholar 

  11. Ismail H, Shuhelmy S, Edyham MR (2002) Eur Polym J 38:39

    Article  CAS  Google Scholar 

  12. Yao W, Li Z (2003) Cem Concr Res 33:15

    Article  CAS  Google Scholar 

  13. Thwe MM, Liao K (2003) Com Sci Tech 63:375

    Article  CAS  Google Scholar 

  14. Okubo K, Fujii T, Yamamoto Y (2004) Composites: Part A 35:377

    Article  Google Scholar 

  15. Kundu SK, Ray PK, Sen SK, Bhaduri SK (1995) J Appl Polym Sci 55:543

    Article  CAS  Google Scholar 

  16. Mannan KM, Talukder MAI (1997) Polymer 38:2493

    Article  CAS  Google Scholar 

  17. Gassan J, Bledzki AK (1999) J Appl Polym Sci 71:623

    Article  CAS  Google Scholar 

  18. Ghanshyam SC, Bhatt SS, Inderjeet K, Singha AS, Kaith BS (2000) Polym Degrad Stab 69:261

    Article  Google Scholar 

  19. Rout J, Mishra m, Tripathy SS, Najak SK, Mohanty AK (2001) Com Sci Tech 61:1303

    Article  CAS  Google Scholar 

  20. Ekpenyong KI, Arawo JDE, Melaiye A, Ekwenchi MM, Abdullahi HA (1995) J Fuel 74:1080

    Article  CAS  Google Scholar 

  21. Vega A, Bao M, Lamas J (1997) J Bio Tech 61:1

    Article  CAS  Google Scholar 

  22. Kovier K (2001) Fiber reinforced concrete. The cement and concrete Institute, Midrand

    Google Scholar 

  23. Gethamma VG, Mathew KT, Lakshminarayana R, Thomas S (1998) Polymer 39:1483

    Article  Google Scholar 

  24. Paul A, Thomas S (1997) J Appl Polym Sci 63:247

    Article  CAS  Google Scholar 

  25. Romildo DTF, Karen S, George LE, Ghavami K (2000) Cem Concr Compos 22:127

    Article  Google Scholar 

  26. Khan F, Ahmad SR (1996) Polym Degradation St 52:335

    Article  CAS  Google Scholar 

  27. Singh B, Gupta M, Verma A (1996) Polym Compos 17:910

    Article  CAS  Google Scholar 

  28. Saha AK, Das S, Basak RK, Bhatta D, Mitra BC (2000) J Appl Polym Sci 78:495

    Article  CAS  Google Scholar 

  29. Jain S, Jindal UC, Rakesh K (1993) J Mater Sci Lett 12:558

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Murali Mohan Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, K.M.M., Prasad, A.V.R., Babu, M.N.V.R. et al. Tensile properties of elephant grass fiber reinforced polyester composites. J Mater Sci 42, 3266–3272 (2007). https://doi.org/10.1007/s10853-006-0657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0657-8

Keywords

Navigation