Skip to main content
Log in

Effect of coating of graphite particles with polyaniline base on charge transport in epoxy-resin composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Investigations of charge transport, in epoxy resin composites of graphite particles coated with a non-conducting polyaniline-base layer, showed that particle shape and surface structure may crucially affect the percolation behaviour of the systems. In contrast to the gradual increase in the DC conductivity of composites in the range 20–52 vol.% for pure graphite particles, due to their fragmentary nature, a steep rise of several orders of magnitude in conductivity, appeared in composites of graphite particles coated with 10 wt.% of polyaniline base at a particle concentration 50 vol.%. The frequency and temperature dependences indicate that, in both cases, at the maximum loading used (52 vol.%), the obtained material had ohmic conductivity. In contrast, the conductivity of epoxy composites of graphite particles, coated with 20 wt.% of polyaniline base, only slightly increased over the whole range of particle concentrations. These findings suggest that, in the case of 10 wt.% polyaniline coating, due to the irregular surface structure, a certain amount of uncoated material is present, which enables the formation of conducting contacts with ohmic conductivity in the percolation area. The 20 wt.% polyaniline coating forms a compact non-conducting layer on the surface of the graphite particles, thus preventing electrical contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kirkpatricks S (1973) Rev Mod Phys 45:574

    Article  Google Scholar 

  2. Efros AL, Shklovski BI (1976) Phys Stat Solidi B 76:475

    Article  CAS  Google Scholar 

  3. Carmona F, Prudhon P, Barreau F (1984) Solid State Commun 51:255

    Article  CAS  Google Scholar 

  4. Sherman RD, Middleman LM, Jacobs SM (1983) Polym Eng Sci 23:36

    Article  Google Scholar 

  5. Carmona F, Valot E, Servant L, Ricci M (1992) J Phys I (Fr) 2:503

    Article  Google Scholar 

  6. Lux F (1993) J Mater Sci 28:285

    Article  CAS  Google Scholar 

  7. Lux F (1993) Polym Eng Sci 33:334

    Article  CAS  Google Scholar 

  8. Tchmutin IA, Shevchenko VG, Ponomarenko AT (1998) J Polym Sci B: Polym Phys 36:1847

    Article  CAS  Google Scholar 

  9. Chekanov Y, Ohnogi R, Asai S, Sumita M (1998) Polym J 30:3811

    Article  Google Scholar 

  10. Bhattacharya SK, Chaklader ACD (1982) Polym Plast Tech Eng 19:21

    Article  CAS  Google Scholar 

  11. Jana PB, Chaudhuri S, Pal AK, De SK (1992) Polym Eng Sci 32:448

    Article  CAS  Google Scholar 

  12. Gengcheng Y, Renrui T, Xiao P (1997) Polym Compos 18:477

    Article  Google Scholar 

  13. Balberg I (1987) Phys Rev Lett 59:1305

    Article  CAS  Google Scholar 

  14. Sheng P (1980) Phys Rev B 21:2180

    Article  CAS  Google Scholar 

  15. Guoquan W, Peng Z (1997) Polym Eng Sci 37:96

    Article  Google Scholar 

  16. Sichkar VR, Briskman BA, Bukanov IG (1997) Polym Sci A 39:720

    Google Scholar 

  17. Bergman DJ, Imry Y (1977) Phys Rev Lett 39:1222

    Article  Google Scholar 

  18. Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50:77

    Article  Google Scholar 

  19. Scher RJ, Zallen J (1970) J Chem Phys 53:3759

    Article  CAS  Google Scholar 

  20. Yang G (1997) Polym Compos 18:484

    Article  CAS  Google Scholar 

  21. Vilčáková J, Sáha P, Křesálek V, Quadrat O (2000) Synth Met 113:83

    Article  Google Scholar 

  22. Paligová M, Vilčáková J, Sáha P, Křesálek V, Stejskal J, Quadrat O (2004) Physica A 335:421

    Article  CAS  Google Scholar 

  23. Vilčáková J, Sáha P, Quadrat O (2002) Eur Pol J 38:2343

    Article  Google Scholar 

  24. Ryvkina NG, Tchmutin I, Vilčáková J, Pelíšková M, Sáha P (2005) Synth Met 148:141

    Article  CAS  Google Scholar 

  25. Tchmutin I, Ryvkina NG, Soloviova AB, Kedrina NF, Timofieva VA, Rozhkova N, McQueen D (2004) Rus J Pol Sci V46:1

    Google Scholar 

  26. Vilčáková J, Sáha P, Hausnerová B, Quadrat O (2002) Polymer Composites 23:742

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank the Ministry of Education, Youth, and Sports of the Czech Republic (ME 883 and MSM 7088352101) and Grant Agency of the Academy of Sciences of the Czech Republic (A 4050313) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otakar Quadrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelíšková, M., Vilčáková, J., Moučka, R. et al. Effect of coating of graphite particles with polyaniline base on charge transport in epoxy-resin composites. J Mater Sci 42, 4942–4946 (2007). https://doi.org/10.1007/s10853-006-0591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0591-9

Keywords

Navigation