Skip to main content
Log in

Microstructural characterisation by X-ray scattering of perovskite-type La0.8Sr0.2MnO3±δ thin films prepared by a dip-coating process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The La0.8Sr0.2MnO3 (LSM) cathode materials are widely used in solid oxide fuel cells (SOFCs) as electronic conductors. In such materials, the reduction of oxygen is located at the triple contact boundaries: air/cathode LSM/electrolyte which is generally Yttria Stabilised Zirconia (YSZ). In order to improve the chemical reactions at these air/cathode LSM/electrolyte interfaces, the triple phase boundary length has to be optimised. In this aim, we have first synthesised the La0.8Sr0.2MnO3 phase by a sol–gel route and, second, LSM thin films have been deposited on various polished substrates by using a dip-coating process. The structure and microstructure of the resulting LSM thin layers have been investigated by using well suited complementary techniques such as X-ray reflectometry, grazing incidence small angle X-ray scattering, X-ray diffraction and scanning electronic microscopy. The structural and microstructural parameters of LSM thin films have been managed and studied as a function of synthesis parameters such as initial metallic salt concentration, time and temperature of annealing. The higher the metallic salt concentration, the higher the thickness of the film, the smaller the film density. The as-prepared layers are amorphous and the single crystallised perovskite form is obtained for low temperature heat treatments. Therefore, the annealed coatings are constituted by randomly oriented LSM nanocrystals, which organise in a more or less dense close-packed microstructure according to the initial metallic salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nguyen MQ (1993) J Am Ceram Soc 76:563

    Article  Google Scholar 

  2. Stevens P, Novel-Cattin F, Hammou A, Lamy C, Cassir M (2000) Techniques de l’ingénieur D5:3340

    Google Scholar 

  3. Van Roosmalen JAM, Huijsmans JPP, Plomb L (1993) Solid State Ionics 66:279

    Article  Google Scholar 

  4. Kamata H, Hosuka A, Mizusaki J, Tagawa H (1998) Solid State Ionics 106:237

    Article  CAS  Google Scholar 

  5. Bell RJ, Millar GJ, Drennan J (2002) Solid State Ionics 131:211

    Article  Google Scholar 

  6. Van Roosmalen JAM, Huijsmans JPP, Cordfunke EHP (1991) In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceeding of 2nd international symposium on solid oxide fuel cells. Luxembourg, p 507

  7. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10

  8. Chakraborty A, Sujatha Devi P, Roy S, Maiti HS (1994) J Mater Res 9:986

    Article  CAS  Google Scholar 

  9. Pechini P (1967) Patent, 3.330.697 July 11

  10. Gaudon M (2002) Ph.D. Thesis, Toulouse

  11. Lenormand P (2001) Ph.D. Thesis, Limoges

  12. Lenormand P, Lecomte A, Dauger A, Mary C, Guinebretière R (2000) J Phys IV 10:255

    Google Scholar 

  13. Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) Solid State Sci 4:125

    Article  CAS  Google Scholar 

  14. Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) J New Mat Electrochem Syst 5:57

    CAS  Google Scholar 

  15. Brinker JF, Scherrer GW (1990) Sol–gel science. Academic Press Inc

  16. Croce P, Névot L, Pardo B (1972) Nouv Rev D’Opt Appl 3:37

    Article  CAS  Google Scholar 

  17. Naudon A, Chihab J, Goudeau P, Mimault J (1989) J Appl Cryst 22:460

    Article  CAS  Google Scholar 

  18. Parratt LG (1954) Phys Rev 95:359

    Article  Google Scholar 

  19. Névot L, Pardo B, Corno J (1988) Rev Phys Appl 23:1675

    Article  Google Scholar 

  20. Naudon A, Thiaudière D (1997) J Appl Cryst 30:822

    Article  CAS  Google Scholar 

  21. Levine JR, Cohen JB, Chung YW, Georgopoulos P (1989) J Appl Cryst 22:528

    Article  CAS  Google Scholar 

  22. Naudon A, Babonneau D (1997) Z Metallkd 88:596

  23. Babonneau D, Naudon A, Cabioc’h T, Lyon O (2000) J Appl Cryst 33:437

    Article  CAS  Google Scholar 

  24. Kutsch B, Lyon O, Schmitt M, Mennig M, Schmidt H (1997) J Appl Cryst 30:948

    Article  CAS  Google Scholar 

  25. Masson O, Guinebretière R, Dauger A (1996) J Appl Cryst 29:540

    Article  CAS  Google Scholar 

  26. Kiessig H (1931) Ann Phys 10:769

    Article  CAS  Google Scholar 

  27. Henke BL, Gullikson EM, Davis JC (1993) Atomic Data Nuclear Data 54:181

    Article  CAS  Google Scholar 

  28. Lenormand P, Laberty-Robert C, Ansart F (2002) In: Proceedings of the France-Deutschland fuel cell conference, p 248

  29. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. John Wiley & Sons, Inc., NewYork

  30. Glatter O, Kratky O (eds) (1982) Small-angle X-ray Scattering. Academic Press, London

  31. Levine JR, Cohen JB, Chung YW (1991) Surf Sci 248:215

    Article  CAS  Google Scholar 

  32. Yoneda Y (1963) Phys Rev 131:2010

    Article  Google Scholar 

  33. Babonneau D (1999) Ph.D. Thesis, Poitiers

  34. Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) J Non Cryst Sol 147&148:424

    Article  Google Scholar 

  35. Lange FF (1996) Science 273:903

    Article  CAS  Google Scholar 

  36. Miller KT, Lange FF (1989) Mater Res Soc Symp Proc 155:191

    Article  CAS  Google Scholar 

  37. Rizzato AP, Santilli CV, Pulcinelli SH (1999) J Non-Cryst Solids 247:158

    Article  CAS  Google Scholar 

  38. Copel M, Carlier E, Gusev EP, Guha S, Bojarczuck N, Poppeller M (2001) Appl Phys Lett 78:2670

    Article  CAS  Google Scholar 

  39. Stemmer S, Chen Z, Keding R, Maria JP, Wicaksana D, Kingon AI (2002) J Appl Phys 92:82

    Article  CAS  Google Scholar 

  40. Busch BW, Pluchery O, Chabal YJ, Muller DA, Opila RL, Raynien Kwo J, Garfunkel E (2002) MRS Bull 27:206

    Article  CAS  Google Scholar 

  41. Holy V, Kubena J, Ohlidal I, Lischka K, Plotz W (1993) Phys Rev B 47:15896

    Article  CAS  Google Scholar 

  42. Jergel M, Holy V, Majkova E, Luby S, Senderak R (1997) J Appl Cryst 30:64

    Article  Google Scholar 

  43. Matsuoka H, Tanaka H, Hashimoto T, Ise N (1987) Phys Rev B 36:1754

    Article  CAS  Google Scholar 

  44. Lenormand P, Lecomte A, Babonneau D, Dauger A (2006) Thin Solids Films 495:224

    Article  CAS  Google Scholar 

  45. Boulle A (2002) Ph.D. Thesis, Limoges

  46. Miller KT, Lange FF, Marshall DB (1990) J Mater Res 5:151

    Article  CAS  Google Scholar 

  47. Seifert A, Vojta A, Speck JS, Lange FF (1996) J Mater Res 11:1470

    Article  CAS  Google Scholar 

  48. Mary C, Guinebretière R, Trolliard G, Soulestin B, Villechaise P, Dauger A (1998) Thin Solids Films 336:156

    Article  CAS  Google Scholar 

  49. Guinebretière R, Bachelet R, Boulle A, Masson O, Lecomte A, Dauger A (2004) Mater Sci Eng B 109:42

    Article  Google Scholar 

  50. Kleitz M, Petitbon F (1996) Solid State Ionics 92:65

    Article  CAS  Google Scholar 

  51. Sasaki K, Wurthe JP, Godickemeier M, Mitterdorfer A, Gauckler LJ (1995) In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Proceedings of the 4th Int. Symp. On SOFC, Yokohama, Japan, p 625

Download references

Acknowledgements

The authors acknowledge ADEME and the French Fuel Cell Network for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lenormand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenormand, P., Lecomte, A., Laberty-Robert, C. et al. Microstructural characterisation by X-ray scattering of perovskite-type La0.8Sr0.2MnO3±δ thin films prepared by a dip-coating process. J Mater Sci 42, 4581–4590 (2007). https://doi.org/10.1007/s10853-006-0560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0560-3

Keywords

Navigation