Skip to main content
Log in

Superplasticity by internal frictional heat under biased cyclic loading

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new damping method was developed not only as a testing tool to investigate in situ deformation under stress, but also as a processing method to superplastically deform ceramics. The specific damping capacity (SDC) at low frequencies (<0.2 Hz) decreased with increasing frequencies, which matched previous internal friction results. However, at higher frequencies (0.2–5 Hz) SDC increased with frequencies, which was explained by a new internal frictional heat mechanism. Three different ceramics: a non-superplastic one and two superplastic ones with different activation energies, showed the same behavior at the high frequency damping tests (1–5 Hz). From these results, it was deduced that a cyclic load at high frequencies, superimposed on a static one, has a great potential to enhance superplasticity by specifically heating up grain boundaries from internal frictional heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nieh TG, Wadsworth J, Wakai F (1991) Inter Mater Rev 36:146

    CAS  Google Scholar 

  2. Sherby OD, Wadsworth J (1985) Mater Sci Tech 1:925

    CAS  Google Scholar 

  3. Wakai F, Sakaguchi S, Matsuno Y (1986) Adv Ceram Mater 1:259

    CAS  Google Scholar 

  4. Hwang SL, Chen IW (1994) J Am Ceram Soc 77:2575

    Article  CAS  Google Scholar 

  5. Nieh TG, Wadsworth J (1990) Acta Metall Mater 38:1121

    Article  CAS  Google Scholar 

  6. Wu MY, Wadsworth J, Sherby OD (1987) Metall Trans A 18A:451

    CAS  Google Scholar 

  7. Kim KN, Hiraga K, Morita K, Sakka Y (2001) Nature 413:288

    Article  CAS  Google Scholar 

  8. Roebben G et al. (1998) Acta Mater 46:4711

    Article  CAS  Google Scholar 

  9. Pezzotti G (2003) J Non-crystal Sol 321:37

    Article  CAS  Google Scholar 

  10. Roebben G et al. (1997) Rev Sci Instrum 68:5411

    Article  Google Scholar 

  11. Gadaud P, Guisolan B, Kulik A, Schaller R (1990) Rev Sci Instrum 61:2671

    Article  CAS  Google Scholar 

  12. Lakki A, Schaller R, Carry C, Benoit W (1999) J Am Ceram Soc 82:2181

    Article  CAS  Google Scholar 

  13. Cai B, Zhou H, Zhang P, Kong QP (1999) Phys Stat Sol A 172:63

    Article  CAS  Google Scholar 

  14. Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic, New York, pp. 52–73

    Google Scholar 

  15. Rouby D, Penns O, Reynaud P (2001) in Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites Weinheim, New York, pp. 429–439

    Google Scholar 

  16. Lakki A, Schaller R, Nauer M, Carry C (1993) Acta Metall Mater 41:2845

    Article  CAS  Google Scholar 

  17. Daraktchiev M, Schaller R (2003) Phys Stat Sol 195:293

    Article  CAS  Google Scholar 

  18. Riviere A (2004) Mater Sci Eng A 370:204

    Article  CAS  Google Scholar 

  19. Kennedy FE (2000) in Bhushan B (ed) Modern Tribology Handbook. CRC Press, Florida, pp 235–247

    Google Scholar 

  20. Staehler JM, Mall S, Zawada LP (2003) Comp Sci Tech 63:2121

    Article  CAS  Google Scholar 

  21. Shuler SF, Holmes JW, Wu X, Roach D (1993) J Am Ceram Soc 76:2327

    Article  CAS  Google Scholar 

  22. Zhou X, Hulbert DM, Kuntz JD, Garay JE, Mukherjee AK (2004) Ceram Trans 165:155

    Google Scholar 

  23. Zhou X, Hulbert DM, Kuntz JD, Sadangi RK, Shukla V, Kear BH, Mukherjee AK (2005) Mater Sci & Eng A 394:353

    Article  CAS  Google Scholar 

  24. Senda T, Takahashi C, Uematsu S, Amada S (1992) JSME Inter J, Series III, Vibration, Control Engineering, Engineering for Industry 35:660

    Google Scholar 

  25. Popov VL, Psakhie SG, Shilko EV, Dmitriev AI, Knothe K, Bucher F, Ertz M (2002) Phys Mesomech 5:17

    Google Scholar 

Download references

Acknowledgements

We thank Mr. D.M. Hulbert and J.D. Kuntz for experimental assistance and Drs. R.G. Duan and G.D. Zhan and Mr. N.A. Mara for helpful discussion. This research is supported by US Office of Naval Research under the grant number N00014-03-1-0148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhou.

Appendix I Estimation of temperature increase at grain boundaries under biased cyclic loading

Appendix I Estimation of temperature increase at grain boundaries under biased cyclic loading

Temperature increase by internal friction heat can be estimated from tribology theories. Suppose the tribology theory remains valid in the microscopic scale (sub micrometer), and the temperature increase ΔT [19] is:

$$ \Delta T = \frac{{2\mu Pvl}} {{k\sqrt {\pi (1.011 + \frac{{vl\rho C_p }} {{2k}})} }} $$

in which, the heating rate μ is the friction coefficient, P is the normal stress, ν is the relative velocity, l is width of the sliding band, k is thermal conductivity, ρ is the density, and C p is the specific heat capacity. In our tests,

$$ \mu {\hbox{ = }}0.2,P{\hbox{ = }}20\;{\hbox{MPa, }}\rho {\hbox{ = 6050}}\;{\hbox{kgm}}^{ - {\hbox{3}}} {\hbox{, }}C_p {\hbox{ = 400}}\;{\hbox{Jkg}}^{ - {\hbox{1}}} \;{\hbox{K}}^{ - {\hbox{1}}} {\hbox{, }}k{\hbox{ = 2}}\;{\hbox{Wm}}^{ - {\hbox{1}}} \;{\hbox{K}}^{ - {\hbox{1}}} $$

For TZ3Y specimens in our test, the average grain size is about 300 nm, the sample size is 3 × 3 × 5 mm, \(l{\hbox{ = 300}}\;{\hbox{nm $ \times $ }}\frac{{{\hbox{3}}\,{\hbox{mm $ \times $ 3}}\;{\hbox{mm}}}} {{{\hbox{300}}\,{\hbox{nm $ \times $ 300}}\,{\hbox{nm}}}}{\hbox{ = 30}}\,{\hbox{m}}\) Supposing the displacement is caused by uniform grain boundary sliding, for a 10 MPa as stress amplitude and 20 MPa as static stress, the relative velocity was determined to be ν = 1.0 × 10−5 ms−1 from the actual displacement amplitude at = 1 Hz and ν = 2.0 × 10−5 ms−1 at = 2 Hz, we have Δ= 50 °C for = 1 Hz and similarly, we have Δ= 71 °C for = 2 Hz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Mukherjee, A.K. Superplasticity by internal frictional heat under biased cyclic loading. J Mater Sci 42, 5217–5222 (2007). https://doi.org/10.1007/s10853-006-0456-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0456-2

Keywords

Navigation