Skip to main content
Log in

The degradation of novolak containing metal nitrates and the formation of YBCO

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymers that form a complex with metal ions from nitrate salts can be used to prepare precursors for the production of high temperature superconductor (HTSC) ceramics that can be processed using advantageous polymer processing techniques and then pyrolyzed. This paper describes the production of HTSC from a precursor based on m-cresol formaldehyde novolak resin (mCFNR) that contains yttrium, barium and copper nitrate salts in the proportions needed for the formation of YBa2Cu3O7−x (YBCO). The degradation of the precursor and the effects of the pyrolysis process (temperature, time, environment, substrate) were studied in detail. The mechanisms of degradation for mCFNR and for the HTSC precursors were significantly different with the precursor degradation beginning at significantly lower temperatures. The optimal pyrolysis begins in an inert atmosphere to hinder BaCO3 formation and then continues in oxygen to 950 °C. A dense orthorhombic YBCO film with preferential [001] orientation results from topotaxial growth on SrTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bednorz G, Müller KA (1986) Z Phys B64:189

    Article  Google Scholar 

  2. Wu MK, Ashborn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Phys Rev Lett 58:908

    Article  CAS  Google Scholar 

  3. Chien JCW, Gong BM, Madsen JM, Halock RM (1988) Phys Rev B 38:11853

    Article  CAS  Google Scholar 

  4. von Lampe I, Schultze D, Zygalsky F, Silverstein MS (2003) Polym Degrad Stabil 81:57

    Article  CAS  Google Scholar 

  5. von Lampe I, Schmalstieg A, Götze S, Muller JP, Zygalsky F, Lorkowski HJ, Matalla M (1997) J Mater Sci Lett 16:16

    Article  Google Scholar 

  6. von Lampe I, Bruckner A, Götze S (1997) Die Angew Makromol Chem 251:157

    Article  Google Scholar 

  7. von Lampe I, Götze S, Zygalsky F (1996) J Low Temp Phys 105:1289

    Article  Google Scholar 

  8. von Lampe I, Waesche M, Krueger RP, Lorkowski HJ (1994) Fresenius' J Anal Chem 349:256

    Article  Google Scholar 

  9. von Lampe I, Schultze D, Zygalsky F (2001) Polym Degrad Stabil 73:87

    Article  Google Scholar 

  10. Silverstein MS, Najary Y, Grader GS, Shter GE (2001) J Polym Sci Part B: Polym Phys 42:1023

    Article  CAS  Google Scholar 

  11. Silverstein MS, Najary Y, Lumelsky Y, von Lampe I, Grader GS, Shter GE (2004) Polymer 45:937

    Article  CAS  Google Scholar 

  12. Naka K, Hagihara K, Tanaka Y, Tachiyama Y, Ohki A, Maeda S (1996) J Mater Sci 31:6389

    Article  CAS  Google Scholar 

  13. Naka K, Tachiyama Y, Ohki A, Maeda S (1996) J Polym Sci: Part A: Polym Chem 34:1003

    Article  CAS  Google Scholar 

  14. Maeda S, Tsurusaki Y, Tachiyama Y, Naka K, Ohki A, Ohgushi T, Takeshita T (1994) J Polym Sci: Part A: Polym Chem 32:1729

    Article  CAS  Google Scholar 

  15. Chien JCW, Gong BM, Mu X, Yang YS (1990) J Polym Sci: Part A: Polym Chem 28:1999

    Article  CAS  Google Scholar 

  16. Pomogailo AD, Savost'ynov VS, Dzardimalieva GI, Dubovitskii AV, Ponomaryev AN (1995) Izv Akad Nauk Ser Khim 6:1096

    Google Scholar 

  17. Dubinsky S, Grader GS, Shter GE, Silverstein MS (2004) Polym Degrad Stabil 86:171

    Article  CAS  Google Scholar 

  18. Dubinsky S, Lumelsky Y, Grader GS, Shter GE, Silverstein MS (2005) J Polym Sci: Part B: Polym Phys 43:1168

    Article  CAS  Google Scholar 

  19. Hoehler A, Guggi D, Neeb H (1989) Appl Phys Lett 54:1066

    Article  CAS  Google Scholar 

  20. Naka K, Tanaka Y, Yamasaki K, Ohki A, Chujo Y, Maeda S (2001) Bull Chem Soc Jpn 74:571

    Article  CAS  Google Scholar 

  21. Phillips JM (1996) J Appl Phys 79:1829

    Article  CAS  Google Scholar 

  22. Chaudhari P, Koch RH, Laibowitz RB, McGuire TR, Gambino RJ (1987) Phys Rev Lett 58:2684

    Article  CAS  Google Scholar 

  23. Yee DS, Gambino RJ, Chisholm MF, Cuomo JJ, Madakson P, Karasinski J (1988) AIP Confer Proc 165:132

    Article  CAS  Google Scholar 

  24. Lumelsky Y (2004) M.Sc. Thesis, Department of Materials Engineering, Technion, Haifa, Israel

  25. Hummel DO (1998) Atlas of polymer and plastics analysis 2 Part b/I. Carl Hanser Verlag, Munich, pp 428–433

  26. Costa L, Rossi di Monterela L, Gamino G, Weil ED, Pearce EM (1997) Polym Degrad Stabil 56:23

    Article  CAS  Google Scholar 

  27. von Lampe I, Kunze R, Neubert D, Günther W (1995) Polym Degrad Stabil 50:337

    Article  CAS  Google Scholar 

  28. Colthup NB, Daly LH (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press, New York

    Google Scholar 

  29. Rojas RM, Kovacheva D, Petrov K (1999) Chem Mater 11:3263

    Article  CAS  Google Scholar 

  30. Jackson WM, Conley RT (1964) J Appl Polym Sci 8:2163

    Article  CAS  Google Scholar 

  31. Cseri T, Bekassy S, Kenessy G, Liptay G, Figueras F (1996) Thermochim Acta 288:137

    Article  CAS  Google Scholar 

  32. Taylor TJ, Dollimore D, Gamlen GA (1986) Thermochim Acta 103:333

    Article  CAS  Google Scholar 

  33. Zivkovic ZD, Zivkovic DT, Grujicic DB (1998) J Therm Anal Calorim 53:617

    Article  CAS  Google Scholar 

  34. Hamdy MI, Hussein Gamal AM (1996) Powder Technol 87:87

    Article  Google Scholar 

  35. Hussein Gamal AM (1994) Thermochim Acta 244:139

    Article  Google Scholar 

  36. Jergel M, Chromik S, Strbik V, Smatko V, Hanic F, Plesch G, Buchta S, Valtyniova S (1992) Supercond Sci Technol 5:225

    Article  CAS  Google Scholar 

  37. Cyrot M, Pavuna D (1992) Introduction to superconductivity and high-Tc materials. World Scientific, Singapore, pp 212–213

  38. Singh RK, Kumar D (1998) Mater Sci Eng: R: Rep 22:113

    Article  Google Scholar 

  39. Joint Committee on Powder Diffraction Studies (JCPDS) Card 39-0486

Download references

Acknowledgements

The authors gratefully acknowledge the partial support of the German-Israeli Foundation and the Technion VPR Fund. The authors gratefully acknowledge A. Siegmann, W. D. Kaplan, G. Shter, G. Grader and I. von Lampe with thanks for their most helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Silverstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumelsky, Y., Silverstein, M.S. The degradation of novolak containing metal nitrates and the formation of YBCO. J Mater Sci 41, 8202–8210 (2006). https://doi.org/10.1007/s10853-006-0453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0453-5

Keywords

Navigation