Skip to main content
Log in

Facile Synthesis of SiO2 From Poly(silyne-co-hydridocarbyne) Preceramic Precursor

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pre-ceramic polymers have previously been known as polymeric precursors that can be converted to silicon carbide, diamond and diamond-like carbon upon heating at ambient inert atmosphere. Here, we report to demonstrate a novel and simple method for the production of crystalline SiO2 ceramic species using a polymeric precursor, which is poly(silyne-co-hydridocarbyne), upon heating under an ambient air atmosphere. The synthesis of both the polymer and the resulting crystalline ceramic is relatively straightforward and unique. All characterization methods such as Raman and X-ray analysis were showed that SiO2 with a different crystal structure is successfully produced at 1000, 750, and 500 °C under an ambient air atmosphere. In addition, the type of produced SiO2 strictly depends on process temperature. The results also showed that the materials are polycrystalline which is evaluated from the comprehensive XRD analysis. SiO2 produced is the mixture of Tridymite-M, syn and Moganite at 1000 °C, the mixture of Coesite and Tridymite at 750 °C, and the mixture of Coesite and amorphous SiO2 at 500 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verbeek W, Bayer AG (1973) Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. US Patent No: 3,853,567. Germany, Leverkusen

  2. Yajima S, Hasegawa Y, Okamura K, Matsuzawa T (1978) Development of high tensile strength silicon carbide fibre using an organo silicon polymer precursor. Nature 273:525–527

    Article  Google Scholar 

  3. Pitcher MW, Joray SJ, Bianconi PA (2004) Smooth continuous films of stoichiometric silicon carbide from poly(methylsilyne). Adv Mater 16:706–709

    Article  Google Scholar 

  4. Vermeulen LA, Smith K, Wang J (1999) Electrochemical polymerization of alkyltrichloro silane monomers to form branched Si backbone. Electrochim Acta 45:1007–1014

    Article  Google Scholar 

  5. Nur Y, Toppare L (2013) Synthesis of poly(silyne-co-hydridocarbyne) for silicon carbide production. J Macromol Sci Part A: Pure and Appl Chem 50:923–930

    Article  Google Scholar 

  6. Bianconi PA, Joray SJ, Aldrich BL et al. (2004) Diamond and diamond-like carbon from a preceramic polymer. J Am Chem Soc 126:3191–3202

    Article  Google Scholar 

  7. Nur Y, Pitcher MW, Seyyidoglu S, Toppare L (2008) Diamond from an electrically produced polymer. J Macromol Sci A 45:358–363

    Article  Google Scholar 

  8. Rouxel T, Massouras G, Soraru GD (1999) High temperature behavior of a gel-derived SiOC glass: Elasticity and viscosity. J Sol-Gel Sci Tech 14:87–94

    Article  Google Scholar 

  9. Scarmi A, Sorarù GD, Raj R (2005) The role of carbon in unexpected Visco(An)Elastic behavior of amorphous silicon oxycarbide above 1273K. J Non-Cryst Solids 351:2238–2243

    Article  Google Scholar 

  10. Brequel H, Parmentier J, Soraru GD, Schiffini LD, Enzo S (1999) Study of the phase separation in amorphous silicon oxycarbide glasses under heat treatment. NanoStruct Mater 11:721–731

    Article  Google Scholar 

  11. Soraru GD, Modena S, Guadagnino E, Colombo P, Egan J, Pantano C (2002) Chemical durability of silicon oxycarbide glasses. J Am Ceram Soc 85:1529–1536

    Article  Google Scholar 

  12. Soraru GD, Suttor D (1999) High temperature stability of sol-gel-derived SiOC glasses. J Sol-Gel Sci Techn 14:69–74

    Article  Google Scholar 

  13. Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramic. J Am Ceram Soc 93:1805–1837

    Google Scholar 

  14. Mera G, Navrotsky A, Sen S, Kleebe H-J, Riedel R (2013) Polymer derived SiCN and SiOC ceramics- structure and energetics at the nanoscale. J Mater Chem A 1:3826–3836

    Article  Google Scholar 

  15. Greil P (2000) Polymer derived engineering ceramics. Adv Eng Mater 2:339–348

    Article  Google Scholar 

  16. Wang Y, Li H, Fu Q, Wu H, Yao D, Li H (2012) SiC/HfC/SiC ablation resistant coating for carbon/carbon composites. Surf Coat Technol 206:3883–3887

    Article  Google Scholar 

  17. Awazu K (2004) Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser. J Non-Cryst Solids 337:241–253

    Article  Google Scholar 

  18. Liou TH (2004) Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A 64:313–323

    Article  Google Scholar 

  19. Nagamori M, Malinsky I, Claveau A (1986) Thermodynamics of the Si-CO system for the production of silicon carbide and metallic silicon. Metall Trans B 17:503–514

    Article  Google Scholar 

  20. Dean JA (1999) Physicochemical relationships. McGRAW-Hill, New York

    Google Scholar 

  21. Ngang HP, Ahmad AL, Low SC, Ooi BS (2017) Preparation of thermoresponsive PVDF/SiO2-PNIPAM mixed matrix membrane for saline oil emulsion separation and its cleaning efficiency. Desalination 408:1–12

    Article  Google Scholar 

  22. Nagoo D, Osuzu H, Yamada A, Mine E, Kobayashi Y, Konno M (2004) Particle formation in the hydrolysis of tetraethyl orthosilicate in pH buffer solution. J Colloid Interface Sci 274:143–149

    Article  Google Scholar 

  23. Vemury S, Pratsinis SE, Kibbey L (1997) Electrically controlled flame synthesis of nanophase TiO2, SiO2, and SnO2 powders. J Mater Res 12:1031–1042

    Article  Google Scholar 

  24. Tani T, Watanabe N, Takatori K (2003) Emulsion combustion and flame spray synthesis of zinc oxide/silica particles. J Nanopart Res 5:39–46

    Article  Google Scholar 

  25. Humbach O, Fabian H, Grzesik U, Haken U, Heitmann W (1996) Analysis of OH absorption bands in synthetic silica. J Non-Cryst Solids 203:19–26

    Article  Google Scholar 

  26. Yan Y, Faber AJ, DeWaal H (1995) Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J. Non-Cryst Solids 181:283–290

    Article  Google Scholar 

  27. Han W-T, Tomozawa M (1991) Effect of residual water in silica glass on static fatigue. J Non-Cryst Solids 127:97–104

    Article  Google Scholar 

  28. Ikari A, Matsuo S, Terashima K, Kimura S (1996) In situ observation of etching processes of silica glasses by silicon melts. J Appl Phys 35:3547–3552

    Article  Google Scholar 

  29. Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 25:62–69

    Article  Google Scholar 

  30. Karmakar B, De G, Ganguli G (2000) Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J. Non-Cryst Solids 272:119–126

    Article  Google Scholar 

  31. Makishima A, Tani T (1986) Preparation of amorphous silicas doped with organic molecules by the sol-gel process. J Am Ceram Soc 69:72–74

    Google Scholar 

  32. Corriu RJP, Leclercq D, Mutin PH, Vioux A (1997) Preparation and structure of silicon oxycarbide glasses derived from polysiloxane precursors. J Sol-Gel Sci Technol 8:327–330

    Google Scholar 

  33. Soraru GD, Pederiva L, Latournerie J, Raj R (2002) Pyrolysis kinetics for the conversion of a polymer into an amorphous silicon oxycarbide ceramic. J Am Ceram Soc 85:2181–2187

    Article  Google Scholar 

  34. Tuinstra F, Koenig J (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  Google Scholar 

  35. Ferrari AC, Robertson J (2000) Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  Google Scholar 

  36. Zhang H, Pantano CG (1990) Synthesis and characterization of silicon oxycarbide Glasses. J Am Ceram Soc 73:958–963

    Article  Google Scholar 

  37. Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresource Technol 73:257–262

    Article  Google Scholar 

  38. Lippincott ER, Valkenburg AV, Charles EW, Bunting EN (1958) Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J Res Natl Bureau Stand 61:61–69

    Article  Google Scholar 

Download references

Acknowledgements

We especially thank to TUBITAK for financial support (project number: 211T108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Nur.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nur, Y., Bayol, G. Facile Synthesis of SiO2 From Poly(silyne-co-hydridocarbyne) Preceramic Precursor. J Sol-Gel Sci Technol 83, 223–228 (2017). https://doi.org/10.1007/s10971-017-4388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4388-x

Keywords

Navigation