Skip to main content
Log in

Effect of micro-randomness on macroscopic properties and fracture of laminates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composite materials demonstrate a considerable extent of heterogeneity. A non-uniform spatial distribution of reinforcement results in variations of local properties of fibrous laminates. This non-uniformity not only affects effective properties of composite materials but is also a crucial factor in initiation and development of damage and fracture processes that are also spatially non-uniform. Such randomness in microstructure and in failure evolution is responsible for non-uniform distributions of stresses in composite specimens even under externally uniform loading, resulting, for instance, in a random distribution of matrix cracks in cross-ply laminates. The paper deals with statistical features of a distribution of carbon fibres in a transversal cross-sectional area in a unidirectional composite with epoxy matrix, based on various approaches used to quantify its microscopic randomness. A random character of the fibres’ distribution results in fluctuations of local elastic moduli in composites, the bounds of which depend on the characteristic length scale. A lattice model to study damage and fracture evolution in laminates, linking randomness of microstructure with macroscopic properties, is discussed. An example of simulations of matrix cracking in a carbon fibre/epoxy cross-ply laminate is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reifsnider KL, Case SW (2002) Damage tolerance and durability of material systems. Wiley-Interscience, New York

    Google Scholar 

  2. Baxevanakis C, Jeulin D, Renard J (1995) Int J Fracture 73:149

    Article  CAS  Google Scholar 

  3. Pyrz R (1994) Compos Sci Technol 50:197

    Article  Google Scholar 

  4. Yang S, Gokhale AM, Shan Z (2000) Acta Mater 48:2307

    Article  CAS  Google Scholar 

  5. Tewari A, Gokhale AM (2004) Comput Mater Sci 31:13

    Article  Google Scholar 

  6. Gusev AA, Hine PJ, Ward IM (2000) Compos Sci Technol 60:535

    Article  CAS  Google Scholar 

  7. Buryachenko VA, Schoeppner GA (2004) Int J Solids Struct 41:4827

    Article  Google Scholar 

  8. Wongsto A, Li S (2005) Compos A 36:1246

    Article  Google Scholar 

  9. Bulsara VN, Talreja R, Qu J (1999) Compos Sci Technol 59:673

    Article  Google Scholar 

  10. Ripley BD (1981) Spatial statistics. John Wiley and Sons

  11. Yang S, Tewari A, Gokhale AM (1997) Acta Mater 45:3059

    Article  CAS  Google Scholar 

  12. Ostoja-Starzewski M (1998) Int J Solids Struct 35:2429

    Article  Google Scholar 

  13. Ostoja-Starzewski M, Wang X (1999) Comput Methods Appl Mech Eng 168:35

    Article  Google Scholar 

  14. Chhabra AB, Jensen RV (1989) Phys Rev Lett 62:1327

    Article  Google Scholar 

  15. Harte D (2001) Multifractals: theory and applications. Chapman & Hall/CRC

  16. Grassberger P, Badii R, Politi A (1988) J Stat Phys 51:135

    Article  Google Scholar 

  17. Chhabra AB, Meneveau C, Jensen RV, Sreenivasan KR (1989) Phys Rev A 40:5284

    Article  Google Scholar 

  18. Evertsz CJG, Mandelbrot BB (1992) In: Peitigen HO, Jürgens H, Saupe D (eds) Chaos and fractals. New frontiers of science. Springer, Berlin e.a., p 921

  19. Falconer KJ (2003) Fractal geometry. Mathematical foundations and applications. Wiley, Chichester

    Book  Google Scholar 

  20. Hill R (1965) J Mech Phys Solids 13:213

    Article  Google Scholar 

  21. Budiansky B (1965) J Mech Phys Solids 13:223

    Article  Google Scholar 

  22. Mori T, Tanaka K (1973) Acta Metall 21:571

    Article  Google Scholar 

  23. Benveniste Y (1987) Mech Mater 6:147

    Article  Google Scholar 

  24. Hashin Z, Rosen BW (1964) Trans ASME J Appl Mech 31:223

    Google Scholar 

  25. Hashin Z (1983) Trans ASME J Appl Mech 50:481

    Article  Google Scholar 

  26. Christensen RM (1980) Mechanics of composite materials. John Wiley & Sons

  27. Aboudi J (1991) Mechanics of composite materials: a unified micromechanical approach. Elsevier, Amsterdam

    Google Scholar 

  28. Herakovich CT (1988) Mechanics of fibrous composites. John Wiley & Sons, New York e.a

    Google Scholar 

  29. Lafarie-Frenot MC, Hénaff-Gardin C (1991) Compos Sci Technol 40:307

    Article  CAS  Google Scholar 

  30. Manders PW, Chou T-W, Jones FR, Rock JW (1983) J Mater Sci 18:2876

    Article  Google Scholar 

  31. Fukunaga H, Chou T-W, Peters PWM, Schulte K (1984) J Compos Mater 18:339

    Google Scholar 

  32. Bergmann HW, Block J (1992) Fracture/damage mechanics of composites – static and fatigue properties. Institut für Stukturmechanik DLR, Braunschweig

    Google Scholar 

  33. Silberschmidt VV (2005) Compos A 36:129

    Article  CAS  Google Scholar 

  34. Berthelot J-M, El Mahi A, Leblond P (1996) Compos A 27A:1003

    Article  CAS  Google Scholar 

  35. Silberschmidt VV (1995) Mech Compos Mater Struct 2:243

    CAS  Google Scholar 

  36. Silberschmidt VV (1998) Comput Mater Sci 13:154

    Article  CAS  Google Scholar 

  37. Silberschmidt VV, Hénaff-Gardin C (1996) In: Petit J (ed) ECF 11. Mechanisms and mechanics of damage and failure, vol 3. EMAS Ltd, London, p 1609

  38. Wang ASD, Chou PC, Lei SC (1983) In: Proceedings of the symposium on composites, Boston, 13–18 November 1983, p 7

  39. Berthelot J-M, Le Corre J-F (2000) Compos Sci Technol 60:2659

    Article  Google Scholar 

  40. Vinogradov V, Hashin Z (2005) Int J Solids Struct 42:365

    Article  Google Scholar 

  41. Ihara C, Misawa T, Shigeyama Y (1988) J JSMS 37:198

    Google Scholar 

  42. McCartney LN, Schoeppner GA (2002) Compos Sci Technol 62:1841

    Article  CAS  Google Scholar 

  43. Berthelot J-M, Leblond P, El Mahi A, Le Corre J-F (1996) Compos A 27A:989

    Article  CAS  Google Scholar 

  44. Silberschmidt VV (1997) Mech Compos Mater Struct 4:23

    CAS  Google Scholar 

  45. McCartney LN, Schoeppner GA, Becker W (2000) Compos Sci Technol 60:2347

    Article  Google Scholar 

  46. Vasiliev VV, Morozov EV (2001) Mechanics and analysis of composite materials. Elsevier, Amsterdam e.a

  47. Silberschmidt VV, Chaboche J-L (1994) Eng Fracture Mech 48:379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Silberschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silberschmidt, V.V. Effect of micro-randomness on macroscopic properties and fracture of laminates. J Mater Sci 41, 6768–6776 (2006). https://doi.org/10.1007/s10853-006-0205-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0205-6

Keywords

Navigation