Skip to main content
Log in

Bonding at copper–alumina interfaces established by different surface treatments: a critical review

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present study summarizes the effects of processing conditions and substrate cleaning procedures on the structure, chemistry and bonding of Cu/(0001)Al2O3 interfaces as determined by advanced transmission electron microscopy techniques. The Cu/(0001)Al2O3 samples were prepared by molecular beam epitaxy (MBE) and solid-state diffusion bonding. Investigations of the MBE samples showed that the Al2O3 cleaning procedure alters the interfacial bonding. Metallic bonds occurred for an Ar+ ion sputtering and subsequent ultra-high vacuum (UHV) annealing treatment. Strongly ionic–covalent bonds were found for a wet chemical cleaning process followed by UHV annealing. The interfacial electronic structure did not reveal any significant changes compared to the bulk electronic structure for samples where the substrate surface was annealed in an oxygen-containing atmosphere after Ar+ ion pre-sputtering and UHV annealing. The results obtained at the solid-state diffusion-bonded Cu/Al2O3 samples indicated that the processing parameters such as temperature and load do not change the bonding behavior. Post-annealing of the solid-state diffusion-bonded Cu/Al2O3 samples in a well-defined oxygen partial pressure led to the formation of CuAlO2 at the interface between Cu and Al2O3, which improved the adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mulder C, Klomp JT (1985) J Phys C4:111

    Google Scholar 

  2. Kasowski RV, Ohuchi FS, French RH (1988) Physica B 150:44

    Article  CAS  Google Scholar 

  3. Beraud C, Courbiere M, Esnouf C, Juve D, Treheux D (1989) J Mat Sci 24:4545

    Article  CAS  Google Scholar 

  4. Mellul S, Chevalier JP (1991) Phil Mag A 64:561

    Article  CAS  Google Scholar 

  5. Guo Q, Moller PJ (1991) Surf Sci 244:228

    Article  CAS  Google Scholar 

  6. Ernst F, Pirouz P, Heuer AH (1991) Phil Mag A 63:259

    Article  CAS  Google Scholar 

  7. Dehm G, Rühle M, Ding G, Raj R (1995) Phil Mag B 71:1111

    Article  CAS  Google Scholar 

  8. Scheu C, Dehm G, Rühle M, Brydson R (1998) Phil Mag A 78(2):439

    Article  CAS  Google Scholar 

  9. Dehm G, Scheu C, Möbus G, Brydson R, Rühle M (1997) Ultramicroscopy 67:207

    Article  CAS  Google Scholar 

  10. Kleber JA, Niu C, Shepherd K, Jennison DR, Bogicevic A (2000) Sur Sci 446:76

    Article  Google Scholar 

  11. Niu C, Shepherd K, Martini D, Tong J, Kleber JA, Jennison DR, Bogicevic A (2000) Surf Sci 465:163

    Article  CAS  Google Scholar 

  12. Johnson KH, Pepper SV (1982) J Appl Phys 53:6634

    Article  CAS  Google Scholar 

  13. Zhao GL, Smith JR, Raynolds J, Srolovitz DJ (1996) Interface Sci 3(4):289

    Article  CAS  Google Scholar 

  14. Batyrev I, Kleinman L (2001) Phys Rev B 64:033410

    Article  CAS  Google Scholar 

  15. Wang XG, Smith JR, Scheffler M (2002) Phys Rev B 66:073411

    Article  CAS  Google Scholar 

  16. Zhang W, Smith JR, Evans AG (2002) Acta Mater 50(15):3803

    Article  CAS  Google Scholar 

  17. Schwartz B (1984) Am Ceram Soc Bulletin 63(4):577

    CAS  Google Scholar 

  18. Yoshino Y, Ohtsu H, Shibita T (1992) J Am Ceram Soc 75(12):3353

    Article  CAS  Google Scholar 

  19. Proceedings of the 15th international congress on electron microscopy (2002) Engelbrecht J, Sewell T, Witcomb M, Cross R, Richards P (eds) vol 1 and 2, The Microscopy Society of Southern Africa, Durban

  20. Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New York

    Google Scholar 

  21. Fultz B, Howe JM (2000) Transmission electron microscopy and diffractometry of materials. Springer, Berlin

    Google Scholar 

  22. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. 2 Plenum Press, New York

    Google Scholar 

  23. Applications of transmission electron energy-loss spectroscopy in materials science (1992) Disko MM, Ahn CC, Fultz B (eds) Warrendale, The Minerals, Metals & Materials Society, Pennsylvania

  24. Gao M, Scheu C, Wagner T, Kurtz W, Rühle M (2002) Metallkunde Z 93(5):438

    CAS  Google Scholar 

  25. Scheu C, Gao M, Rühle M (2002) J Mat Sci Technol 18(2):117

    CAS  Google Scholar 

  26. Scheu C (2004) Interface Sci 12:127–134

    Article  CAS  Google Scholar 

  27. Scheu C, Klein S, Tomsia A, Rühle M (2002) J Microscopy 208:11

    Article  CAS  Google Scholar 

  28. Stein W (2001) PhD thesis, University of Stuttgart, Germany

  29. Akatsu T, Scheu C, Wagner T, Gemming T, Hosoda N, Suga T, Rühle M (2000) Appl Surf Sci 165:159

    Article  CAS  Google Scholar 

  30. Klein S (2001) PhD thesis, University of Stuttgart, Germany

  31. Kurtz W (2002) Z Metallkunde 93(5):432

    CAS  Google Scholar 

  32. Strecker A, Salzberger U, Mayer J (1993) Prakt Metallogr 30:482

    CAS  Google Scholar 

  33. S. H. Oh, private communication

  34. Müllejans H, Bruley J (1995) J Microscopy 180:12

    Google Scholar 

  35. Scheu C (2002) J Microscopy 205:52

    Article  Google Scholar 

  36. Chang CC (1971) J Vac Sci Technol 8:500

    Article  CAS  Google Scholar 

  37. Varga P, Taglauer E (1982) J Nucl Mater 111/112:726

    Article  Google Scholar 

  38. Batyrev I, Alavi A, Finnis M (1999) Faraday Discuss 114:33

    Article  CAS  Google Scholar 

  39. Wang XG, Chaka A, Scheffler M (2000) Phys Rev Lett 84:3650

    Article  CAS  Google Scholar 

  40. Ahn J, Rabalais JW (1997) Surf Sci 388:121

    Article  CAS  Google Scholar 

  41. Hass KC, Schneider WF, Curioni AC, Andreoni W (1998) Science 282:265

    Article  CAS  Google Scholar 

  42. Eng PJ, Trainor TP, Brown GE, Waychunas GA, Newville M, Sutton SR, Rivers ML (2000) Science 288:1029

    Article  CAS  Google Scholar 

  43. Oh SH, Scheu C, Wagner T, Tchernychova E, Rühle M (2006) Acta Materialia 54:2685

    Article  CAS  Google Scholar 

  44. Hashibon A, Elsässer C, Rühle M (2005) Acta Materialia 53:5323

    Article  CAS  Google Scholar 

  45. Dehm G, Edongue H, Wagner T, Oh SH, Arzt E (2005) Z Metallkunde 96(3):249

    CAS  Google Scholar 

  46. Liedtke A, Klein S, private communication

  47. Gallois B, Lupis CHP (1981) Metall Trans 12B(3):549

    CAS  Google Scholar 

  48. Saiz E, Tomsia AP, Cannon RM (1998) In: Tomsia AP, Glaeser AM (eds) Ceramic microstructures, control at the atomic level, Plenum Publishing Corp., p 65

  49. Diemer M, Neubrand A, Trumble KP (1999) J Rödel Am Ceram Soc 82(10):2825

    Article  CAS  Google Scholar 

  50. Trumble KP (1992) Acta Metall Mater 40:S105

    Article  CAS  Google Scholar 

  51. Rogers KA, Trumble KP, Dalgleish BJ, Reimanis IE (1994) J Am Ceram Soc 77(8):2036

    Article  CAS  Google Scholar 

  52. Susnitzky DW, Carter CB (1991) J Mater Res 6(9):1958

    Article  CAS  Google Scholar 

  53. Gonzalez EJ, Trumble KP (1996) J Am Ceram Soc 79(1):114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Thomas Wagner, Dr. Wilhelm Stein, Dr. Gunther Richter and Dr. Wolfgang Kurtz for providing several of the Cu/Al2O3 samples and for helpful discussions. Thanks to Ute Salzberger and Maria Sycha for their excellent TEM specimen preparation, and to Dr. John Bruley and Prof. Hui Gu for providing the CuAl2 and copper oxide spectra. Part of this work was supported by the German Science Foundation through the Graduiertenkolleg “Innere Grenzflächen in kristallinen Materialien” (GRK 285). M. G. wishes to thank the Alexander von Humboldt Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Scheu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheu, C., Gao, M., Oh, S.H. et al. Bonding at copper–alumina interfaces established by different surface treatments: a critical review. J Mater Sci 41, 5161–5168 (2006). https://doi.org/10.1007/s10853-006-0073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0073-0

Keywords

Navigation