Skip to main content
Log in

Preparation of monodispersed spherical barium titanate particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Spherical barium titanate particles with cubic phase were synthesized by a low-temperature hydrothermal reaction. Firstly, The method of hydrolysis of titanium tetrachloride was used for producing spherical TiO2 particles (0.45–1.5 μ m) with various concentrations of TiCl4(0.05–0.2 M) and volume ratios of acetone to water solutions (RH = 0–4). These TiO2 particles were converted to barium titanate by a hydrothermal conversion in a barium hydroxide solution. The size and morphology of the TiO2 particles was controlled by the volume ratio of acetone to water (RH ratio) in the mixed solvent. At the RH ratio of 3, the morphology of TiO2 particles was very uniform and discrete. These TiO2 particles were in the anatase phase and were converted to the rutile phase when the calcination temperature increased to 700∘C and above. Uniform and spherical barium titanate particles were successfully synthesized from the as-prepared TiO2 particles by using a hydrothermal reaction in a barium hydroxide solution. The Ba/Ti ratios, reaction temperature, and reaction time did not influence the size and morphology of BaTiO3 particles, but increased the concentration of unfavorable salts such as Ba(OH)2 and BaCO3. The high purity BaTiO3 particles could be obtained by washing with formic acid to remove the unfavorable salts. The size and morphology of the BaTiO3 particles remained the same as those of the TiO2 particles, confirming the in-situ transformation mechanism for the conversion of TiO2 to BaTiO3. The as-synthesized particles were cubic phase and transformed to tetragonal phase after calcinations at 1150∘C for 1 h. The mean density of the pellets sintered at 1300∘C for 2 h was 5.86 g/cm3 and accounted for 97.34% of the theoretical density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z.-C. Hu, G. A. Miller, E. A. Payzant and C. J. Rawn, J. Mater. Sci. 35 (2000) 2927.

    Article  Google Scholar 

  2. G. J. Choi, S. K. Lee, K. J. Woo, K. K. Koo and Y. S. Cho, Chem. Mater. 10 (1998) 4104.

    Article  Google Scholar 

  3. S. Wada, T. Suzuki and T. Noma, J. Ceram. Soc. Jpn. 103 (1995) 1027.

    Google Scholar 

  4. B. Huybrechts, K. Ishizaki and M. Takata, J. Mater. Sci. 30 (1995) 2463.

    Google Scholar 

  5. Y. Suyama and M. Nagasawa, J. Am. Ceram. Soc. 77 (1994) 603.

    Article  Google Scholar 

  6. A. Beauger, J. C. Mutin and J. C. Niepce, J. Mater. Sci. 18 (1983) 3543.

    Article  Google Scholar 

  7. A. Amin, M. A. Spears and B. M. Kulwicky, J. Am. Ceram. Soc. 66 (1983) 733.

    Google Scholar 

  8. H. S. Potdar, S. B. Deshpande and S. K. Date, Mater. Chem. Phys. 58 (1999) 121.

    Article  Google Scholar 

  9. S. G. Kim, M. H. Lee, T. Y. Noh and C. Lee, J. Mater. Sci. 31 (1996) 3643.

    Google Scholar 

  10. H. Shimooka and M. Kuwabara, J. Am. Ceram. Soc. 78 (1995) 2849.

    Google Scholar 

  11. F. Chaput and J.-P. Boilot, J. Am. Ceram. Soc. 73 (1990) 942.

    Article  Google Scholar 

  12. P. K. Dutta, R. Asiaie, S. A. Akbar and W. Zhu, Chem. Mater. 6 (1994) 1542.

    Article  Google Scholar 

  13. K. Kumazawa, T. Kagimoto and A. Kuwabara, J. Mater. Sci. 31 (1996) 2599.

    Article  Google Scholar 

  14. L. M. Gan, L. H. Zhang, C. H. Chew and B. H. Loo, J. Mater. Sci. 31 (1996) 1071.

    Article  Google Scholar 

  15. P. Gherardi and E. Matijevic, Colloids Surf. 32 (1988) 257.

    Article  Google Scholar 

  16. T. Ogihara, N. Mizutani and M. Koto, Ceram. Int. 13 (1987) 35.

    Article  Google Scholar 

  17. C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. Non-Cryst. Solids 100 (1988) 65.

    Article  Google Scholar 

  18. H. T. Harris and C. H. Byers, J. Non-Cryst. Solids 103 (1988) 49.

    Article  Google Scholar 

  19. H. K. Park, Y. T. Moon, D. K. Kim and C. H. Kim, J. Am. Ceram. Soc. 79 (1996) 2727.

    Article  Google Scholar 

  20. A. Kato, Y. Takeshita and Y. Katatae, Mater. Res. Soc. Symp. Proc. 155 (1989) 13.

    Google Scholar 

  21. Y. T. Moon, H. K. Park, D. K. Kim, I. S. Seog and C. H. Kim, J. Am. Ceram. Soc. 78 (1995) 2690.

    Article  Google Scholar 

  22. M. Z.-C. Hw, V. Kurian, E. A. Payzant, C. J. Rawn and R. D. Hunt, Powder Technol. 110 (2000) 2.

    Article  Google Scholar 

  23. K. Y. Chen and Y. W. Chen, Powder Technol. 141 (2004) 69.

    Article  Google Scholar 

  24. F. Franks, “Water-A Comprehensive Treatise,” (Plenum Press, New York, 1973) Vol. 2, p. 405.

    Google Scholar 

  25. L. Meites, “Handbook of Analytical Chemistry,” (McGraw-Hill Press, New York, 1982) p. 1–49.

    Google Scholar 

  26. J. O. Eckert Jr, C. C. Hung-Houston, B. L. Gersten, M. M. Lencka and R. E. Riman, J. Am. Ceram. Soc. 79 (1996) 2929.

    Google Scholar 

  27. W. Hert, J. Am. Ceram. Soc. 71 (1988) 879.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wen CHEN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHEN, KY., CHEN, YW. Preparation of monodispersed spherical barium titanate particles. J Mater Sci 40, 991–998 (2005). https://doi.org/10.1007/s10853-005-6518-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6518-z

Keywords

Navigation