Skip to main content
Log in

Poly(vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol)/silica organic inorganic hybrid composites were prepared by using sol-gel technique. Tetraethoxysilane was used as the precursor for silica. The reaction was carried out in an aqueous medium having a pH of 1.5 with concentrated hydrochloric acid, used as the catalyst. All the composites were optically clear. Interaction at organic-inorganic interfaces due to hydrogen bonds was speculated from infrared spectroscopic analysis of the hybrid composites. Transmission electron microscopic studies revealed the existence of silica nanoparticles, uniformly dispersed in the organic matrix, which were found to grow in size with increase in tetraethoxysilane loading in the composites. Uniform dispersion of silica particles within the hybrid nanocomposites was also supported from the energy dispersive X-ray mapping of silicon. Dynamic mechanical properties exhibited substantial mechanical reinforcements due to the dispersion of nanosilica particles in the matrix. The results were further supported by significant improvements in the Young's modulus and the tensile strengths of the samples. All the hybrid composites demonstrated excellent water resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. BRINKER and G. W. SCHERER in “Sol-Gel Science; the Physics and Chemistry of Sol-Gel Processing” (New York, Academic Press, 1990).

    Google Scholar 

  2. P. CALVERT, Nature 353 (1991) 501.

    Article  Google Scholar 

  3. B. M. NOVAK, Adv. Mater. 5 (1993) 422.

    Article  Google Scholar 

  4. K. P. HOH, H. ISHIDA and J. L. KOENIG, Polym. Comp. 11 (1990) 121.

    Article  Google Scholar 

  5. Y. WEI, R. BAKTHAVATCHALAM, D. C. YANG and C. K. WHITECAR, Polym. Prepr. 32 (1991) 503.

    Google Scholar 

  6. Y. WEI, D. C. YANG and R. BAKTHAVATCHALAM, Mater. Lett. 3 (1992) 261.

    Google Scholar 

  7. Y. WEI, D. C. YANG, L. G. TANG and M. K. HUTCHINS, J. Mater. Res. 8 (1993) 1143.

    Google Scholar 

  8. Y. WEI, D. C. YANG and L. G. TANG, Macromol. Chem. Rapid. Commun. 14 (1993) 273.

    Article  Google Scholar 

  9. R. V. BAHULEKAR, A. A. PRABHUNE, H. SIVARAMAN and S. PONRATHNAM, Polymer 34 (1993) 163.

    Article  Google Scholar 

  10. J. ZARZYCKI, J. Sol-Gel Sci. Technol. 8 (1997) 17.

    Article  Google Scholar 

  11. B. M. NOVAK and C. DAVIES, Macromolecules 24 (1991) 5481.

    Article  Google Scholar 

  12. M. NANDI, J. A. CONKLIN, L. SALVATI and A. SEN, Chem. Mater. 3 (1991) 201.

    Article  Google Scholar 

  13. H. H WEETALL, B. ROBERTSON, D. CULLIN, J. BROWN and M. WALCH, Biochem. Biophys. Acta. 1142 (1993) 211.

    Google Scholar 

  14. M. T. REETZ, A. ZONTA and J. SIMPELKAMP, Biotechnol. Bioengng. 49 (1996) 527.

    Article  Google Scholar 

  15. C. C. SUN and J. E. MARK, Polymer. 30 (1989) 104.

    Article  Google Scholar 

  16. A. BANDYOPADHYAY, A. K. BHOWMICK and M. DE SARKAR, J. Appl. Polym. Sci. 93 (2004) 2579.

    Article  Google Scholar 

  17. S. SADHU and A. K. BHOWMICK, Rubb. Chem. Technol. 76 (2003) 807.

    Google Scholar 

  18. M. KRUMOVA, D. LOPEZ, R. BENAVENTE, C. MIJANGOS and J. M. PERENA, Polymer 41 (2000) 9265.

    Article  Google Scholar 

  19. E. J. KOULOURI and J. K. KALLITSIS, ibid. 39 (1998) 2373.

    Article  Google Scholar 

  20. F. SHARAF, M. H. EI-ERAKI, A. R. EI-GOHARY and F. M. AHMED, Polym. Degrad. Stab. 47 (1995) 343.

    Article  Google Scholar 

  21. S. YANO, K. KURITA, K. IWATA, T. FURUKAWA and M. KODAMARI, Polymer 44 (2003) 3515.

    Article  Google Scholar 

  22. A. BANDYOPADHYAY, M. DE SARKAR and A. K. BHOWMICK, Rubber Chem. Technol. Sept/Oct (2004).

  23. T. URAGAMI, K. OKAZAKI, H. MATSUGI and T. MAYATA, Macromolecules 35 (2002) 9156.

    Article  Google Scholar 

  24. G. SOCRATES, “IR Characteristic Group Frequencies” (Wiley, New York, 1980).

    Google Scholar 

  25. D. S. KIM, H. B. PARK, J. W. RHIM and Y. M. LEE, J. Membr. Sci. 240 (2004) 37.

    Article  Google Scholar 

  26. C. SHAO, H. Y. KIM, J. GONG, B. DING, D. R. LEE and S. J. PARK, Mater. Lett. 57 (2003) 1579.

    Article  Google Scholar 

  27. E. E. SHAFEE and H. F. NAGUIB, Polymer 44 (2003) 1647.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, A., De Sarkar, M. & Bhowmick, A.K. Poly(vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties. J Mater Sci 40, 5233–5241 (2005). https://doi.org/10.1007/s10853-005-4417-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-4417-y

Keywords

Navigation